POLITECNICO DI TORINO

SCUOLA DI DOTTORATO
Ph.D. Course in Ingegneria Informatica e dei Sistemi — XXVII cycle

Ph.D. Dissertation

Advanced Techniques for Solving
Optimization Problems through
Evolutionary Algorithms

Marco Gaudesi

Supervisors Ph.D. Coordinator
Ing. Giovanni Squillero Prof. Matteo Sonza Reorda

February 2015

Summary

Evolutionary algorithms (EAs) are machine-learning techniques that can be exploited
in several applications in optimization problems in different fields. Even though
the first works on EAs appeared in the scientific literature back in the 1960s,
they cannot be considered a mature technology, yet. Brand new paradigms as
well as improvements to existing ones are continuously proposed by scholars and
practitioners. This thesis describes the activities performed on uGP , an existing
EA toolkit developed in Politecnico di Torino since 2002. The works span from the
design and experimentation of new technologies, to the application of the toolkit to
specific industrial problems.

More in detail, some studies addressed during these three years targeted: the
realization of an optimal process to select genetic operators during the optimization
process; the definition of a new distance metric able to calculate differences between
individuals and maintaining diversity within the population (diversity preservation);
the design and implementation of a new cooperative approach to the evolution able
to group individuals in order to optimize a set of sub-optimal solutions instead of
optimizing only one individual.

Contents

1 Introduction

2 Background: Evolutionary Algorithms

2.1 Natural and artificial evolution
2.2 The classical paradigms Lo
2.3 Genetic programming
uGP
3.1 Design Principles oo
3.2 uGP Evolution Types
3.2.1 Standard Evolution
3.2.2 Multi-Objective Evolution
3.2.3 Group Evolution 0L
3.3 Evaluator
331 Cache
3.4 Operators’ Activation Probability
3.4.1 The Multi-Armed Bandit Framework
3.4.2 DMAB and Operators Selectionin EA
3.4.3 puGP Approacho
3.4.4 Notations
3.4.5 Operator Failures
3.4.6 Credit Assignment L.
3.4.7 Operator Selection
3.5 A Novel Distance Metric
3.5.1 Introductiono
3.5.2 puGP Approach
3.5.3 Experimental Evaluation
3.6 puGP Operators
3.6.1 Mutation Operators
3.6.2 Crossover Operators
3.6.3 Scan Operators

3.6.4 Group Operators 43

3.6.5 Random Operator 44
4 Evolutionary Algorithms Applications 46
4.1 Automatic Generation of On-Line Test Programs through a Coopera-
tion Schemeo 48
4.1.1 Introduction 48
4.1.2 Background L oo 49
4.1.3 Concurrent SBST generation of test programs for on-line testing 51
4.1.4 Case studies and Experimental results 55
4.2 An Evolutionary Approach to Wetland Design 60
4.2.1 Introduction 60
422 Backgroundo L oo 61
4.2.3 Proposed Approach L. 63
4.2.4 Experimental Evaluation 68
4.3 Towards Automated Malware Creation: Code Generation and Code
Integration 70
4.3.1 Introduction 70
4.3.2 Background: Stealth and Armoring Techniques 72
4.3.3 Automated Malware Creation 74
4.3.4 Experimental Results 78
4.4 An Evolutionary Approach for Test Program Compaction 81
4.4.1 Introduction 81
4.4.2 Background oL Lo 83
4.4.3 Proposed Approach 84
4.4.4 Case Study and Experimental Results 87
5 Conclusions 94
A Acronyms 97
B List of Publications 100
Bibliography 103

List of Figures

List of Figures

3.1
3.2

3.3

3.4

3.5

3.6

3.7

4.1
4.2
4.3
4.4

4.5

Internal representation of an assembler program
Distinction between genotype, phenotype and fitness value in an
example with LGP used for Assembly language generation.
Venn diagram of the symmetric difference. The area corresponding to
AA Bisdepicted ingrey.o
Example of symbols computed for alleles and (2,3)-grams for two
individuals. Symbols are represented as Greek letters inside hexagons,
alleles as Roman letters inside circles, while their position in the
individual is reported in a square. The symbols common to the two
individuals are € (corresponding to allele F in position 4), (2-gram
B —C), 0 (2-gram C — D) and A (3-gram B — C — D). The UID
between the two individuals is thus |S(A) A S(B)| = |S(A)US(B) —
S(A)NS(B)[=16
Correlation between the proposed UID distance and hamming distance
in the standard OneMax problem (50 bits)— Sample of 500 random
individuals. o
Correlation between the proposed UID distance and hamming distance
in the standard OneMax problem (50 bits) — Individuals generated
during a run.
Correlation between the proposed UID distance and the Levenshtein
distance in the Assembly OneMax problem (32 bits) — Sample of 500
random individuals. 0oL L

Atomic block pseudo-code.
Individuals and Groups in an 8-individual population
Evolutionary run for the address calculation module
Sample from on of the program in the best group at the end of the
evolutionary run for the forwarding unit.
Individual B: Representation of the phenotype of an individual ex-
tracted from the first generation of evolution; dark areas show the
distribution of vegetation over the wetland surface.

5

59

List of Figures

4.6

4.7

4.8
4.9
4.10
4.11
4.12

Individual 7: Individual with percentage of vegetation next to the
maximum limit but without good filtering performance, due to the
distribution not optimized within the basin.
Individual AAU: Representation of the individual that reached the
best optimization level. The percentage of vegetation is close to
the imposed limit to 60% but, thanhs to the best arrangement of
vegetation patches, its filtering performance is optimal.
Schema of the proposed framework for code generation.
Structure of the code integration approach.
Program compaction flowo 00000
Forwarding and interlock unit program size and duration evolution
Decode unit program size and duration evolution

List of Tables

List of Tables

3.1

3.2

3.3

3.4

3.5

4.1

4.2
4.3

Possible genes appearing inside the individuals during the Assembly
generation problem. For each gene, all variables and corresponding

values are listed, as well as the probability of occurrence. 33
Parameters used during the experiments with fitness sharing in the
NK-landscapes benchmark. 00000 37

Results for the set of experiments on the NK-landscapes benchmark.
Experiments with fitness sharing with the Hamming distance (left)
and the UID (right); experiments with a corresponding radius are

reported on the same line. 37
Parameters used during the experiments with fitness sharing in the
Assembly language generation problem. 38

Results for the set of experiments on the Assembly-language generation
benchmark. Experiments using fitness sharing with the Levenshtein
distance (left) and the UID (right); experiments with a corresponding
radius are reported on the same line. 38

Summary of the experiments for code injections. While SPLIT.EXE
shows vulnerabilities even after a first run, several attempts are needed
to find exploitable areas in TESTDISK.EXE 80
Compaction of test programs for the forwarding unit 90
Compaction of test programs for the decode unit, with 1% of faults lost 92

Chapter 1

Introduction

Optimization problems are quite common in computer science, whenever whenever
real-world applications are considered [90]. These problems are often impossible
to resolve through an exact mathematical approach: this could be due to the
inapplicability of an exact optimization method, or to a time consuming approach
that do not satisfy application constraints — in such cases it could be necessary to
perform a complete exploration of all the possible solutions in order to find the
optimal one, unacceptable in terms of time and computational costs. Approach
based on Evolutionary Algorithms might be well-suited to solve such optimization
problems.

An Evolutionary Algorithm (EA) is an optimization local-search algorithm. It
is based on a population and makes use of mechanisms inspired by the biological
world, most notably: selection, reproduction with inheritance, survival of the fittest.
Each individual represent a candidate solution. Starting from a random initial
population, EAs improve it by generating new individuals through mutation and
crossover operators, and removing less promising solutions. This result is an efficient
exploration of the space of all the possible solutions, reducing the number of solutions
needed to find a quasi-optimal one.

The aim of this Ph.D. Thesis is the study of EA techniques, and to investigate to
new possible approaches for improving them. EAs were applied through the uGP [97]
evolutionary tool, a generic EA optimizer-based that was designed and implemented
in 2002 in Politecnico di Torino. Moreover, such approaches were applied to real
problems, and to typical unreal problem discussed in literature in order to prove
their efficacy.

The first improvement in my thesis is a novel approach of the evolutionary
algorithms, in which the best solutions are composed by a set of individuals, instead
to be composed of only one individual. This new EA paradigm has been called
Cooperative co-evolutions algorithms (CCEA) in literature, but they are based on
the idea of switching the evolution into co-evolutions of independent parts of the

1 — Introduction

optimal solution [4][56][80]. Following the aforementioned ideas, during this thesis,
it was developed a new cooperative evolution; this mechanism exploits the same
basis of standard evolutionary theories: it uses a single population containing all the
active individuals. The main novelty is that individuals are grouped in subsets of
the populations, and cooperate together on reaching the optimal result; moreover,
individuals can be shared with different groups.

To optimize this approach, two types of genetic operators work at the same
time: the former are individual genetic operators, similar to the ones used in
standard evolution; the latter are group genetic operators, useful to change individual
configuration of a selected group.

This approach was exploited to automatically generate a set of test programs
for diagnosis of microprocessor; the approach interestingly fits the problem, because
would be obtained as best solution, a group covering the maximum number of faults,
formed by individuals that are the more specialized as possible, covering a little
amount of faults.

The second improvement addressed is the definition of a new distance working at
genotype level. Evolutionary Algorithms are optimization mechanisms population
based: this means that several solutions coexist together at the same step of evolution.
Genetic operators are applied to selected individuals, and the generated offspring
is evaluated and then inserted within the population; at this point, individuals are
ordered by fitness value. Due to that the population should have always the same
dimension at the end of each generational step, all the worst individuals exceeding
the maximum number of individuals allowed to form the population will be destroyed.
Following this approach, as the generations go on, individuals will become more
similar to each other; this behavior is due to the smaller quantity of new genetic
material that will be introduced within population by mutation operators, causing
also the convergence of solutions towards an optima. This could be an excellent result,
if the optima is the global one; otherwise, this can lead to a premature convergence
towards a local optima, limiting the exploration phase.

To avoid this problematic, several approaches were studied [91], for example, the
fitness sharing one, that shares fitness values between similar individuals. To apply
this approach is fundamental to use a good way to calculate similarity (or distance)
between individuals. This is the aim of the new distance definition, described in the
following.

Another improvement, described in this thesis, regards the mechanism used to
select genetic operators to be applied during the evolution. To better exploit the
optimization capabilities of an evolutionary algorithm, it is fundamental to perform
correct choices depending on the evolution phase: to settle to this task, automatic
adaptive systems were designed, the Multi-Armed Bandit (MAB) and the Dynamic
Multi-Armed Bandit (DMAB), that base the selection of genetic operators on their
rewards [32]. Such methodologies update the probabilities after each operator’s

2

1 — Introduction

application, creating possible issues with positive feedback and impairing parallel
evaluations. The DMAB techniques, moreover often rely upon measurements of
population diversity, that might not be applied to all real-world scenarios. To fix
these two techniques, in this thesis is proposed a generalization of the standard
DMAB paradigm, paired with a simple mechanism for operator management that
allows parallel evaluations and self-adaptive parameter tuning.

The first part of the thesis presents a summary of the current state of the art
on Evolutionary Algorithm field, then ©GP evolutionary tool will be described. In
the following chapter new technologies, implemented during the Ph.D. course, are
outlined, together with the discussions about application of evolutionary algorithms
to real and typical problems.

Chapter 2 illustrates the complexity of the evolutionary algorithms fields, the state-
of-the-art of this optimization technology and typical problems that are addressed
through these technologies.

Chapter 3 is dedicated to a detailed description of the uGP Evolutionary Algo-
rithm tool, that is the EA mainly used during this three years of doctorate course,
focusing the description on new technologies that were implemented: the DMAB
and the definition of the distance to calculate differences between individuals [47].

Chapter 4 presents improvements introduced within yGP ; the Group Evolution
was applied to an optimization problem typically approached by standard implemen-
tation of evolutionary algorithms [25]. Moreover, other optimization problems are
presented [46][21][23].

Chapter 5 concludes this thesis and drafts the future works.

Chapter 2

Background: Evolutionary
Algorithms

FEvolution is the theory postulating that all the various types of living organisms
have their origin in other preexisting types, and that the differences are due to
modifications inherited through successive generations. Fvolutionary computation
is a branch of computer science focusing on algorithms inspired by the theory of
evolution and his internal mechanisms. The definition of this field in computer
science is not well defined, but it could be considered as a branch of computational
intelligence and may be included into the broad framework of bio-inspired heuristics.

This chapter sketches the basics of evolutionary computation and introduces its
terminology.

2.1 Natural and artificial evolution

Fundamentally, the original theories regarding evolution and natural selection were
proposed almost concurrently and independently by Charles Robert Darwin and
Alfred Russel Wallace in XIX century, combined with selectionism of Charles Weis-
mann and genetics of Gregor Mendel, are accepted in the scientific community, as
well as widespread among general public.

This theory (called Neo-Darwinism) provides the basis for the biologists: through
it, the whole process of evolution is described, requiring notions such as reproduction,
mutation, competition, and selection. Reproduction is the process of generating an
offspring where the new copies inherit traits of the old one or ones. Mutation is the
unexpected alteration of a trait. Competition and selection are the inevitable strive
for survival caused by an environment with limited resources.

The evolution process is a mechanism that progresses as a sequence of step,
some mostly deterministic and some mostly random [71]. Such an idea of random

4

2 — Background: Evolutionary Algorithms

forces shaped by deterministic pressures is inspiring and, not surprisingly, has been
exploited to describe phenomena quite unrelated to biology. Notable examples
include alternatives conceived during learning [22], ideas striving to survive in our
culture [33], or even possible universes.

Evolution may be seen as an improving process that perfect raw features. Indeed
this is a mistake that all biologists warn us not to do. Nevertheless, if evolution is
seen as a force pushing toward a goal, another terrible misunderstanding, it must
be granted that it worked quite well: in some million years, it turned unorganized
assembles of cells into wings, eyes, and other amazingly complex structures without
requiring any a-priori design. The whole neo-Darwinist paradigm may thus be
regarded as a powerful optimization tool able to produce great results starting from
scratch, not requiring a plan, and exploiting a mix of random and deterministic
operators.

Dismissing all biologists’ complains, evolutionary computation practitioners
loosely mimic the natural process to solve their problems. Since they do not know how
their goal could be reached, at least not in details, they exploit some neo-Darwinian
principles to cultivate sets of solutions in artificial environments, iteratively modify-
ing them in discrete steps. The problem indirectly defines the environment where
solutions strive for survival. The process has a defined goal. The simulated evolution
is simplistic when not even implausible. Notwithstanding, successes are routinely
reported in the scientific literature. Solutions in a given step inherit qualifying traits
from solutions in the previous ones, and optimal results slowly emerge from the
artificial primeval soup.

In evolutionary computation, a single candidate solution is termed individual,
the set of all candidate solutions is called population, and each step of the evolution
process generation. The ability of an individual to solve the given problem is
measured by the fitness function, that ranks how likely one solution to propagate
its characteristics to the next generations is. Most of the jargon of evolutionary
computation mimics the terminology of biology. The word genome denotes the whole
genetic material of the organism, although its actual implementation differs from one
approach to another. The gene is the functional unit of inheritance, or, operatively,
the smallest fragment of the genome that may be modified during the evolution
process. Genes are positioned in the genome at specific positions called loci, the
plural of locus. The alternative genes that may occur at a given locus are called
allele.

Biologists distinguish between the genotype and the phenotype: the former is
all the genetic constitution of an organism; the latter is the observable properties
that are produced by the interaction of the genotype and the environment. Many
evolutionary computation practitioners do not stress such a precise distinction. The
fitness value associated to an individual is sometimes assimilated to its phenotype.

5

2 — Background: Evolutionary Algorithms

To generate the offspring for the next generation, evolutionary algorithms im-
plement both sexual and asexual reproduction. The former is usually named re-
combination; it necessitates two or more participants, and implies the possibility for
the offspring to inherit different characteristics from different parents. The latter
is named replication, to indicate that a copy of an individual is created, or more
commonly mutation, to stress that the copy is not exact. In some implementations,
mutation takes place after the sexual recombination. Almost no evolutionary algo-
rithms take into account gender; hence, individuals do not have distinct reproductive
roles. All operators that modify the genome of individuals can be cumulatively called
genetic operators.

Mutation and recombination introduce variability in the population. Parent
selection is also usually a stochastic process, while biased by the fitness. The
population broadens and contracts rhythmically at each generation. First, it widens
then the offspring is generated. Then, it shrinks when individuals are discarded.
The deterministic pressure usually takes the form of how individuals are chosen for
survival from one generation to the next. This step may be called survivor selection.

Evolutionary algorithms are local search algorithms since they only explore
a defined region of the search space, where the offspring define the concept of
neighborhood. For they are based on the trial and error paradigm, they are heuristic
algorithms. They are not usually able to mathematically guarantee an optimal
solution in a finite time, whereas interesting mathematical properties have been
proven over the years.

If the current boundary of evolutionary computation may seem vague, its in-
ception is even hazier. The field does not have a single recognizable origin. Some
scholars identify its starting point in 1950, when Alfred Turing pointed out the simi-
larities between learning and natural evolutions [106]. Others pinpoint the inspiring
ideas appeared in the end of the decade [44] [16], despite the fact that the lack of
computational power significantly impairs their diffusion in the broader scientific
community. More commonly, the birth of evolutionary computation is set in the
1960s with the appearance of three independent research lines, namely: genetic
algorithms, evolutionary programmaing, and evolution strategies and. Despite the
minor disagreement, the pivotal importance of these researches is unquestionable.

2.2 The classical paradigms

Genetic algorithm is probably the most popular term in evolutionary computation.
It is abbreviated as GA, and it is so popular that in the non-specialized literature
it is sometimes used to denote any kind of evolutionary algorithm. The fortune of
the paradigm is linked to the name of John Holland and his 1975 book [54], but the
methodology was used and described over the course of the previous decade by several

6

2 — Background: Evolutionary Algorithms

researchers, including many Holland own students [43] [20] [10]. Genetic algorithms
have been proposed as a step in classifier systems, a technique also proposed by
Holland. However, it may be maintained that they have been exploited more to
study the evolution mechanisms itself, rather than solving actual problems. Very
simple test benches, as trying to set a number of bits to a specific value, were used to
analyze different strategies and schemes. Many variations have been proposed. Thus,
is not sensible to describe a canonical genetic algorithm, even in this pioneering
epoch.

In a genetic algorithm, the individual, i.e., the evolving entity, is a sequence of
bit, and this is probably the only aspect common to all the early implementations.
The size of the offspring is usually larger than the size of the original population.
Different crossover operators have been proposed. The parents are chosen using a
probability distribution based on their fitness. How much a highly fit individual
is favored determines the selective pressure of the algorithm. After evaluating all
new individuals, the population is reduced back to its original size. Several different
schemes to determine which individuals survive and which are discarded have been
proposed, interestingly all schemes are strictly deterministic. When all parents are
discarded, regardless their fitness, the approach is called generational. Conversely,
if parents and offspring compete for survival regardless their age, the approach is
steady-state. Any mechanism that preserves the best individuals through generations
is called elitism.

Evolutionary programming, abbreviated as EP, was proposed by Lawrence J.
Fogel in a series of works in the beginning of 1960s [41] [42]. Fogel highlighted that
an intelligent behavior requires the ability to forecast changes in the environment,
and therefore focused his work on the evolution of predictive capabilities. He chose
finite state machines as evolving entities, and the predictive capability measured the
ability of an individual to anticipate the next symbol in the input sequence provided
to it.

The proposed algorithm considers a set of P automata. Each individual in
such population is tested against the current sequence of input symbols, i.e., its
environment. Different payoff functions can be used to translate the predictive
capability into a single numeric value called fitness. Individuals are ranked according
to their fitness. Then, P new automata are added to the population. Each new
automaton is created modifying one existing automaton. The type and extent of the
mutation is random and follows certain probability distributions. Finally, half of the
population is retained and half discarded, thus the size of the population remains
constant. These steps are iterated until an automaton is able to predict the actual
next symbol, then the symbol is added to the environment and process repeated.

In the basic algorithm, each automaton generates exactly one descendant through
a mutation operator. Thus, there is no recombination and no competitive pressure
to reproduce. The fitness value is used after the offspring is added to the population

7

2 — Background: Evolutionary Algorithms

to remove half of the individuals, and, unlikely genetic algorithm, survival is not
strictly deterministic. How much a highly fit individual is likely to survive in the
next generation represent the selective pressure is evolutionary programming. Later,
the finite-state machine representation of the genome was abandoned, and the
evolutionary programming technique was applied to diverse combinatorial problems.

The third approach is evolutionary strategies, ES for short, and was proposed
by Hans-Paul Schwefel and Ingo Rechenberg in mid 1960s. It is the more mundane
paradigm, being originally developed as an optimization tool to solve practical
optimization problems.

In evolutionary strategies, the individual is a set of parameters, usually encoded as
numbers, either discrete or continuous. Mutation simply consists in the modification
of one parameter, with small alterations being more probable than larger ones. On
the other hand, recombination can implement diverse strategies, like copying different
parameters from different parents, or averaging them. Remarkably, the very first
evolution strategies used a population of exactly one individual, and thus did not
implement any crossover operator.

Scholars developed a unique formalism to describe the characteristics of their
evolution strategies. The size of the population is commonly denoted with the Greek
letter mu (u), and the size of the offspring with the Greek letter lambda (). When
the offspring is added to the current population before choosing which individuals
survive in the next generation, the algorithm is denoted as a (1 + A)-ES. In this case,
a particularly fit solution may survive through different generations as in steady-state
genetic algorithms. Conversely, when the offspring replace the current population
before choosing which individuals survive in the next generation, the algorithm is
denoted as a (u, A\)-ES. This approach resembles generational genetic algorithm,
and the optimum solution may be discarded during the run. For short, the two
approaches are called plus and comma selection, respectively. And in 2000s literature
these two terms can be found in the descriptions completely of different evolutionary
algorithms. When comma selection is used, ;# < A must hold. No matter the selection
scheme, the size of the offspring is much larger than the size of the population in
almost all implementations of evolution strategies.

When recombination is implemented, the number of parents required by the
crossover operator is denoted with the Greek letter rho (p) and the algorithm
written as (u/p T A)-ES Indeed, the number of parents is smaller than the number
of individuals in the population, ie., p < u. (u T 1)-ES are sometimes called
steady-state evolutionary strategies.

Evolution strategies may be nested. That is, instead of generating the offspring
using conventional operators, a new evolution strategy may be started. The result of
the sub-strategy is used as the offspring of the parent strategy. This scheme can be
found referred as nested evolution strategies, or hierarchical evolution strategies, or
meta evolution strategies. The inner strategy acts as a tool for local optimizations

8

2 — Background: Evolutionary Algorithms

and commonly has different parameters from the outer one. An algorithm that runs
for v generations a sub-strategy is denoted with (u/p + (u/p T A)7)-ES. Where ~
is also called isolation time. Usually, there is only one level of recursion, although
a deeper nesting may be theoretically possible. Such a recursion is rarely used in
evolutionary programming or genetic algorithms, although it has been successfully
exploited in peculiar approaches, such as [33].

Since evolution strategies are based on mutations, the search for the optimal
amplitude of the perturbations kept busy researchers throughout the years. In real-
valued search spaces, the mutation is usually implemented as a random perturbation
that follows a normal probability distribution centered on the zero. Small mutations
are more probable than larger ones, as desired, and the variance may be used as a
knob to tweak the average magnitude. Since different problems may have different
requirements, researchers proposed to evolve the variance and the parameters simul-
taneously. Later, because even the same problem may call for different amplitudes
in different loci, a dedicated variance has been associated to each parameter. This
variance vector is modified using a fixed scheme. While the object parameter vector,
i.e., the values that should be optimized, are modified using the variance vector. Both
vectors are then evolved concurrently as parts of a single individual. Extending the
idea, the optimal magnitudes of mutation may be correlated. To take into account
this phenomenon, modern evolution strategies implement a covariance matriz. The
idea was presented in mid 1990s and has represented the state of the art in the field
for the next decade.

Since all evolutionary algorithms show the capacity to adapt to different problems,
they can sensibly be labeled as adaptive. An evolutionary algorithm that also adapts
the mechanism of its adaptation, i.e., its internal parameters, is called self adaptive.
Parameters that are self adapted are named endogenous, like hormones synthesized
within an organism. Self adaptation mechanisms have been routinely exploited both
in the evolution strategies and evolutionary programming paradigms, and sometimes
used in genetic algorithms.

In the 2000s, evolution strategies are mainly used as a numerical optimization tool
for continuous problems. Several implementations, written either in general-purpose
programming languages or commercial mathematical toolboxes, like MatLab, are
freely available. And they are sometimes exploited by practitioners overlooking their
bio-inspired origin. Also evolutionary programming is mostly used for numerical
optimization problems. The practical implementations of the two approaches mostly
converge, although the scientific communities remain deeply distinct.

Over the years, researchers also broaden the scope of genetic algorithms. They
have been used for solving problems whose results are highly structured, like the
traveler salesman problem where the solution is a permutation of the nodes in a
graph. However, the term genetic algorithm remained strongly linked to the idea of
fixed-length bit strings.

2 — Background: Evolutionary Algorithms

If not directly applicable within a different one, the ideas developed by researchers
for one paradigm are at least inspiring for the whole community. The various
approaches may be too different to directly interbreed, but many key ideas are now
shared. Moreover, over the year a great number of minor and hybrid algorithms, not
simply classifiable, have been described.

2.3 Genetic programming

The forth and last evolutionary algorithm sketched in this is introduction is genetic
programming, abbreviated as GP. Whereas uGP shares with it more in its name
than in its essence, the approach presented in this book owes a deep debit to its
underlying ideas.

Genetic programming was developed by John Koza, who described it after
having applied for a patent in 1989. The ambitious goal of the methodology is to
create computer programs in a fully automated way, exploiting neo-Darwinism as
an optimization tool. The original version was developed in Lisp, an interpreted
computer language that dates back to the end of the 1950s. The Lisp language has the
quite unique ability to handle fragments of code as data, allowing a program to build
up its subroutines before evaluating them. Everything in Lisp is a prefix expression,
except variables and constants. Genetic programming individuals were lisp programs,
thus, they were prefix expressions too. Since the Lisp language is as flexible as
inefficient, in the following years, researchers moved to alternative implementations,
mostly using compiled language. Indeed, the need for computational power and
the endeavor for efficiency have been constant pushes in the genetic programming
research since its origin. While in Lisp the difference between an expression and a
program was subtle, it became sharper in later implementations. Many algorithms
proposed in the literature clearly tackle the former, while are hardly applicable to
the latter.

Regardless the language used, in genetic programming individuals are almost
always represented internally as trees. In the simplest form, leaves, or terminals, are
numbers. Internal nodes encode operations. More complex variations may take into
account variables, complex functions and programming structures. The offspring
may be generated applying either mutation or recombination. The former is the
random modification of the tree. The latter is the exchange of sub-trees between the
two parents. Original genetic programming used huge populations, and emphasized
recombination, with no, or very little, mutations. In fact, the substitution of a
sub-tree is highly disruptive operation and may introduce a significant amount of
novelty. Moreover, a large population ensures that all possible symbols are already
available in the gene pool. Several mutations have been proposed, like promoting a
sub-tree to a new individual, or collapsing a sub-tree to a single terminal node.

10

2 — Background: Evolutionary Algorithms

The evolutionary programming paradigm attracted many researchers. They were
used as test benches for new practical techniques, as well as in theoretical studies.
Its challenges stimulated new lines of research. The various topics tackled included:
representation of individuals; behavior of selection in huge populations; techniques
to avoid the growth of trees; type of initializations. Some of these researches have
been inspiring for the development uGP .

11

Chapter 3
uGP

In this chapter are described the new technologies implemented within yGP |, an
evolutionary algorithm useful to optimize solution of complex problems, and its actual
configuration. This EA tool is completely defined in three blocks: an evolutionary
core, a constraints library and an external evaluator. The evolutionary core contains
the implementation of evolution-based optimizer; the constraints library serve to
the user for a generic structure definition of individual. The external evaluator is a
user-written program called by uGP for checking each proposed solution, returning
a feedback representing the goodness of the solution in approaching the accounted
problem.

12

3 - uGP

3.1 Design Principles

1GP is an evolutionary toolkit designed to be flexible and simply adaptable to very
different environment, and applicable to many optimization problems.

The tool implementation follows the idea of maximize the modularity of the
code; therefore, it is possible to extend the program reusing some parts, expressly
designed to be generic. Operators, for example, are implemented starting from a
generic class that define virtual methods that must be implemented in each working
genetic operator to be used during optimization process.

The evolutionary core consists on a program to be compiled only once, with the
aim of obtaining an executable file runnable in the target machine, on which user
will run experiments.

Through this approach, the uGP executable can be reused without modification
for different optimization problems: external XML configuration files are requested
by the tool for setting evolution parameters and constraints for individuals generation.
This is due to the modularity reached by the particular implementation approach:
the evolutionary core is the more static part, that not need any modification. The
external evaluator is provided by the user, and it is bound by the particular problem
to be optimized. The constraints library, defined through the aforementioned XML
file, provides informations to the evolutionary core in order to describe the structure
of each individual within the population of solution. A solution can be formed by
a non-fixed number of fields, each of which can be repeated an arbitrary number
of times; values related to these variables argument will be chosen automatically,
during evolution. Within constraints configuration file the user can indicate types
and ranges of values that can be assigned to each field part of the individual; the
user could also define new enumerated types, specifying all the possible values that
a variable can assume.

Original application for which pGP was made is the creation of assembly-language
programs for testing microprocessor. This precise scope is highlighted by the par-
ticular internal representation of candidate solutions, that is engineered with the
aim of manage assembly programs, including functions, interrupt handlers and data,
and provides also a complete support to conditional branches and labels within
instructions.

Candidate solutions are forged starting from the description provided by the user
through the constraints configuration file; this file, through a xml-oriented structure,
define the internal structure that each individual must have to be considered as a
valid solution to the approached problem.

Constraints file basically define some macros, that are the building block of
individuals. Each macro is formed by two parts: a fixed one that is the expression,
and another one that is variable and define the parameters that will be used within
the expression. The internal encoding structure of candidate solutions is based on a

13

3 - uGP

directed multigraphs, in which each node encode a specific macro defined within the
constraints file.

Each node of the graph represents a macro, but the variable parts (parameters)
are stored as tags or additional edges. The user defined rules are used also to convert
the graph to text file, in order to have a simple representation to be passed to the
user-provided evaluator.

The afore described representation, that is by construction the most generic as
possible, shows two important ideas on which uGP is based: the former is that no
knowledge about the problem being solved is included in uGP itself; the latter is
that the user is only required to describe the appearance of the candidate solutions
to the faced problem and to provide a program able to evaluate the goodness of each
solution proposed by the evolutionary algorithm.

The Figure 3.1 shows the internal encoding of an assembler program, and its
respective text representation ready to be sent to the user-provided evaluator program.

- add ax, 29

‘l’ add jeq n4d45422
B add ex, dx
b nd45422:

"lr sub ax, cx
— add dx, 567
ax

‘L x|
add
dx

Figure 3.1. Internal representation of an assembler program

3.2 uGP Evolution Types

Several kinds of evolution can be simulated through the uGP evolutionary tool;
the optimization method must be specified by the user at the beginning of the
configuration file. This is necessary because different evolution approaches can
require different parameters to be provided to correctly set the optimization process.

14

3 - uGP

Evolution types actually performed by uGP are: standard, that indicates the
default setting for a classical evolution; multi-objective, that allows the simultaneous
optimization of two or more conflicting objectives; and finally group evolution, a
new approach on the evolutionary algorithms panorama that permit the cooperative
optimizations of sub-populations of solutions.

To correctly setting the evolution process, there are several parameters that can
be tuned by the user. Values to be assigned to these parameters can be optimized
trough a trial-and-error approach; normally by using correct parameters the optimized
solution can be reached rapidly, but final best solution should be comparable.

Parameters characterizing an optimization process are:

e 4 is the size of the population; at the beginning and at the end of each
generation, there will be exactly p individuals;

e \: is the number of genetic operators that will be applied at each step. Genetic
operators can creates more than one individual, so the offspring size is usually
bigger than A.

In uGP | however, are present several other parameters that should be set for
adjusting the evolution related to the faced optimization problem:

e v: the size of the initial randomly-created population. After the first generation,
as number of individuals, will be complied the value specified as the y parameter.
This option permits to start the evolution creating a larger number of random
solutions to raise the search space explored and to begin the evolution from a
better starting point.

e o: through this parameter is possible to regulate the strength of genetic opera-
tors. It is a self-adapting value that regulate the difference from exploration
and exploitation phases. At the beginning of the evolutionary process his value
is higher and genetic operators will create individuals that differ much from
parents, in order to make macroscopic changes and explore quickly the majority
of the search space. The o value will be lower at the end of the evolution, when
exploitation is better, regulating genetic operators for creating individuals more
similar from their parents, thus refining their genetic heritage.

e inertia: this parameter represents the resistance of the system to the self-
adapting push towards new values. It is used to tune the self-adapting mech-
anism of uGP , in order to set the velocity on which the algorithm itself
modifies its behavior as the evolution goes on, trying to always have the best
performance given the current situation.

In pGP | therefore, two different types of selection of parent individuals are
available:

15

3 - uGP

o tournament WithFitnessHole: a classical tournament selection, with the further
possibility of comparing individuals on their delta entropy instead of the fitness
value(s). The dimension of the tournament is managed by the auto-adaptive
7 value, that set the number of individuals involved. In addition to this
mechanism, as described in [79], with a probability equal to the fitness hole, the
tool does not select individuals based on their fitness but on a different criterion.
Currently, the alternative criterion is the contribution of the individual to the
total entropy.

e ranking: with this other type of parent selection, each individual has a proba-
bility to be chosen for reproduction based on its position in the population,
ordered by fitness value(s). Inertia parameter is used to auto-adapt this value
depending on the phase of the evolution.

3.2.1 Standard Evolution

The standard evolution is the most widespread use of genetic algorithm.

This approach places the basis of optimization through an evolutionary algorithm.
It is a population based approach, in which the EA is required to optimize solutions
with the aim to enhanced them basing their goodness on numerical value(s), called
fitness. The fitness is indicating the goodness of each solution to solve the problem
addressed by the optimization, and it is a value assigned by the external evaluator.
In the case in which several numerical values are needed to evaluate each individual,
the uGP will consider them according to an importance order, reflecting the same
order in which values are returned by the evaluator.

At the beginning of the optimization process, the EA first creates a population
containing random solutions. Then, at each generation, genetic operators are applied
to selected individuals in order to create new ones: offspring is then evaluate in order
to verify their goodness to solve the addressed problem. The process goes on with
the aim of exploring the whole search space and to find the global optimal solution.

3.2.2 Multi-Objective Evolution

The Multi-Objective evaluation is an optimization process slightly different from the
previous one. It evolves a population of individuals basing their goodness to solve
the problem on two or more values that, differently from the standard evolution, are
all taken into account with the same importance.

Due to conflicts that should be present among fitness values, at the end of the
evolution will not be possible to select a single best solution; this is an expected
behavior of this kind of optimization: a single individual cannot represent the best

16

3 - uGP

solution for all the conflicting fitnesses values involved withint the optimization
process.

At the end of the evolution, yGP will indicate a set of solutions forming a Pareto
front. Individuals present on the Pareto front will be the best ones balancing the
optimization taking into account all the defined fitnesses.

3.2.3 Group Evolution

The approach faced through this particular kind of evolution, is based on recent
new ideas developed within the evolutionary computation field. This evolutionary
algorithm technology is based on the evolution of groups of solutions, in order to
obtain a set of individuals able to solve together the faced problem in an optimal way.
Each individual of the population could be considered as a complete solution to the
problem but, considering the typical evolution process implemented, the algorithm
was forged to be able to obtain from each individual a partial solution. The final
best set should group the partial solutions fitting together as a team in the best way
to solve the optimization problem.

The approach being discussed was already applied to two optimization problems:
the former is more trivial and can be mainly considered as an academic experimental
activity, and regards the placement of a set of lamps to illuminate a certain area
[105]; the latter proposes a method for the automatic generation of SBST on-line
test programs for embedded RISC processor [25].

In [25] authors shows, through preliminary experiments based on the aforemen-
tioned new technology, that it performs better than other techniques commonly
applied in the CAD field; in particular, making a comparison with normal evo-
lutionary technique, this new approach shows the capability to reach an optimal
solution composed by a set of homogeneous elements. On the contrary, this is not
possible to be obtained by several run of normal approaches, without an a-priori
knowledge both of the problem and of the role each individual should play in the
global solution. These preliminary experiments were addressed to show that this
algorithm, with respect to the objective of creating a cooperative solution formed
by several individuals sub-optimized to reach a goal, performs better than other
techniques typically used within CAD environment, such as Multi-Run testing.

In [25], as aforementioned, is described an approach for a real CAD problem
about automatic test programs generation for a microprocessor. As expected, the
optimization process was able to obtain a group containing a test set of sub-optimal
test programs that achieves about 91% fault coverage against stuck-at faults on the
forwarding unit of the considered RISC microprocessor.

17

3 - uGP

3.3 Evaluator

The pGP evolutionary algorithm tool is designed to be the as flexible as possible;
following this purpose, it does not provide any internal mechanism to evaluate
generated individuals.

Through this approach, the advantages are twofold:

e The uGP executable need to be compiled only once: no modifies are required
to apply the EA to different problems. The only adjustment required is to set
constraints file in order to allow the tool to generate solutions coherent with
the addressed problem and, if necessary, change parameter settings of the EA.

e The evaluator, being an external part, can be implemented with whatever
technology or programming language. It is enough to provide, indicating it
on the main configuration file, the name of the executable or script file that
1GP should invocate whenever it is necessary to evaluate a solution.

uGP uses the constraints user-defined file as guidelines to create new individuals.
Roughly speaking, in the constraints file is described the precise structure that each
solution should have, and the definitions of values that each section can assume.
Despite this strictly constraints definition, occasionally it could happen that a
generated individual does not comply with the requirements needed by the evaluator.
In this cases, the evaluator should be designed in such a way to return to uGP the
zero value, as to refer that the current solution to be checked is unfeasible. This step
is very important, because this value will be used by the mechanism that rewards
operators in order to regulate their usage during evolution; this mechanism will be
described in detail in Section 3.4.

Due to the particular design of evolutionary algorithm, time is flowing step by
step, defined by generations. This means that, during the period in which solutions
are evaluated, the time is standstill. This important characteristics can be used to
evaluate several individuals of the offspring at the same time, running more than
one instances of the evaluator program in parallel. The number of simultaneous
evaluations can be defined through the parameter concurrentFvaluations within the
configuration file, in the same section in which is defined the evaluator program that
should be used by the uGP .

3.3.1 Cache

During the evolution, and depending on the dimension of the search space expressed
through the definition of constraints, it is quite frequent that application of genetic
operators bring to the creation of a new solution identical to one generated and
already evaluated. Since the evaluation of solutions is the time consuming part of the

18

3 - uGP

optimization, it is clear that is preferable to avoid unnecessary evaluation processes.
To avoid the re-evaluation of solutions of which are already know the goodnesses to
solve the problem, an internal cache mechanism was implemented.

The caching method is based on an internal memory map, containing three values
for each entry: the hash signature of the individual, the complete description of the
solution converted as a string, and his fitness value obtained by calling the external
evaluator: each recent solution optimized by the evolutionary tool is cached using
this mechanism.

As default setting, the cache is enabled with a maximum dimension fixed to
10,000 entries; when the maximum capacity is reached, a Least Recently Used (LRU)
algorithm is used, that discards the least recently used items first. The cacheSize
parameter within the setting configuration file allows the user to change the maximum
dimension of the cache. If the optimized solutions are evaluated by an environment
that change in time, so an individual could have different fitness values, the cache
system must be deactivated. The deactivation means that cache will be flushed at
the end of each evolutionary step (i.e. generation), but keeping this mechanism
within the same step in which the evaluating system should be unchanged.

Through the cache it is possible to reduce the whole evaluating time, shrinking
the duration of a complete optimization process. This caching mechanism is useful
in particular when the Group Evolution (described in Section 3.2.3) is used: group
population is formed by individuals grouped in subsets of the whole population; due
to this, groups can share one or several individuals among themselves. uGP | to
perform correctly the optimization, will ask to the external evaluator both fitness of
the whole group, both fitnesses of each individual part of it;

3.4 Operators’ Activation Probability

In this section is described the Dynamic Multi-Armed bandit (DMAB) mechanism,
used within the uGP with the aim to select different operators to be applied during
evolution, balancing choices on rewards obtained by their previous applications.

3.4.1 The Multi-Armed Bandit Framework

The Exploration VS Exploitation dilemma has been intensively studied in game
theory, especially in the context of the MAB framework [64][8]. Let’s consider an
hypothetical slot machine with N arms (the bandit); at time t, the i-th arm, when
selected, gets a reward 1 with probability p;, and 0 otherwise. A solution to the
MAB problem is a decision making algorithm that selects an arm at every time step,
with the goal of maximizing the cumulative reward gathered during the process.
The widely studied Upper Confidence Bound (UCB) algorithm [8], proves that to

19

3 - uGP

maximize the cumulative reward with optimal convergence rate, the player must
select at each time step ¢ the arm ¢ that maximizes the following quantity:

lo n
Pig+ C -y | okt %’z ki (3.1)

where n;; is the number of times the i-th arm has been activated from the
beginning of the process to time ¢; while p;; denotes the average empirical reward
received from arm i. C is a scaling factor that controls the trade-off between
exploration, favored by the right term of the equation; and exploitation, favored
by the left part of the equation, that pushes for the option with the best average
empirical reward.

3.4.2 DMAB and Operators Selection in EA

The MAB problem can be intuitively applied to operator selection in EAs: every arm
of the bandit can be mapped to one operator. Using the UCB metric, the algorithm
keeps exploring all arms, while favoring good operators. However, contrary to the
theoretical bandit, an evolutionary run is a dynamic environment, in which the
standard MAB algorithm would require a considerable amount of time to detect that
the best operator has changed. To solve this issue, [32] proposed to use a statistical
change detection test, creating the Dynamic MAB (DMAB) algorithm. Specifically,
the Page-Hinkley test [53] is used to detect whether the empirical rewards collected
for the best current operator undergo an abrupt change. In the DMAB, if the PH
test is triggered, suggesting that the current best operator is no longer the best one,
the MAB algorithm is restarted.

An overview of the most successful DMAB based mechanisms can be found in [39].
Further works build on the DMAB algorithm most notably by comparing various
credit assignment mechanisms and measuring how well they complement the DMAB
selection scheme. In [68], for example, the authors propose to combine the DMAB
with a credit assignment scheme called Compass, that evaluates the performance of
operators by considering not only the fitness improvements from parent to offspring,
but also the way they modify the diversity of the population, and their execution
time.

3.4.3 uGP Approach

We propose a DMAB selection strategy that not only allows operators to sporad-
ically fail without being completely removed from the process, but is also able to
consecutively apply several operators without needing a performance feedback after
each application. For our approach, we consider the following EA structure:

20

3 - uGP

operators < {available operators and their MAB state};

policy.init (operators);

parents < {some random individuals};

until reached a stop condition do

offspring < [J;

applications < [];

policy.before_selections (operators);

until A\ successful operator applications do

op ¢ policy.select (operators);

children <+ op.apply(parents);

if children = () then

| policy.failure(op);

else
policy.success(op);
applications.append((op, children));
offspring.append(children);

evaluate(offspring);
policy.reward (parents, offspring, applications);
| parents < selection(parents, offspring);

Algorithm 1: Outline of our target EA

This general structure is shared by different EAs, and now it is present also in
the uGP . In this type of architecture the evaluation phase can be easily parallelized,
and operators can occasionally fail without being removed from the selection process.

During the current generation, the only information that the policy can gather
is whether the selected operator actually produced children, through the functions
policy.success() and policy.failure(). After the evaluation phase, the policy
can access more information: the fitness of the newly produced offspring makes
tournaments possible.

3.4.4 Notations

Each operator is considered as an arm of a MAB and is associated to several statistics.
First, we count the number of successful applications awaiting a reward, in op.pending.
This statistic is reset after each each generation, when the operator actually receives
the rewards corresponding to its applications. Then, the fields op.enabled and
op.tokens account for this operator’s applicability. An operator is enabled when it
can produce new offspring, and will be selected only if it has a positive number of
tokens. Finally, we maintain a short history of the last obtained rewards in op.window

21

3 - uGP

and the classical DMAB statistics, in op.n, op.p, op.m and op.n [68]. Algorithm 2
covers the initialization of these variables.

function policy.init (operators) is
foreach op in operators do

// Intra generational call count
op.pending < 0;

// Failure handling statistics
op.enabled < False;

op.tokens < 3;

// Compass-like window[68]
op.window <— queue of size T;

// DMAB statistics[68]

op.n < 0;

op.p + 0;

op.m < 0;

op.M <+ 0;

Algorithm 2: Initialization of the operator statistics

3.4.5 Operator Failures

We define a “failure” as the application of an operator that does not result in any
new usable solution, or valid individual. This can happen for two reasons: either
the operator is not applicable to the genome of a candidate solution in the current
problem, and will thus always fail; or its execution can sporadically fail, for example
based on the structure of the selected parents. We exclude inapplicable operators by
considering that all operators are disabled until they prove their usefulness by building
a new valid solution. Until that happens, failing operators are called periodically to
check whether some emergent characteristic of the population enables them to work
in a later stage of evolution.

Once an operator is enabled for good, however, its failed executions are disre-
garded: they do not count against the A required executions per generation, and
the same operator (or a different one, when operator selection is stochastic) is just
re-applied. As a consequence, when an unforeseen edge case is encountered during its
execution, an operator can just fail without any penalty: this also makes it easier to
add new operators to a framework, as foreseeing their effect on all possible genomes
is not necessary.

Performance problems can arise if an operator is computationally intensive, builds
very good solutions, but fails most of the time. Such an operator might get called

22

3 - uGP

repeatedly and use a considerable amount of CPU time for the production of few
viable children. To avoid this situation, we use failure tokens, that is, a maximum
number of failed calls allowed per generation. Our failure handling mechanism is
implemented as a “filter” before the real selection strategy, as shown in Algorihtm 3.

3.4.6 Credit Assignment

The state of the art for credit assignment is probably the Compass [69][68] method.
In short, Compass associates the application of an operator with the variation of
two characteristics of the population on which it operates: AD (mean diversity) and
AQ (mean fitness). Its execution time 7" is also stored. These three values, averaged
over a window of the last 7 applications of the operator, are used to compute a
reward. The meta-parameter © defines a compromise between the two first criteria
AD and AQ: according to the authors, it affects the Exploration-vs-FExploitation
(EvE) orientation of the algorithm, and this compromise value is divided by the
execution time of the operator to produce its reward.

While extremely ingenious, this technique cannot be translated directly into all
EAs, and uGP in particular, for several reasons. First of all, uGP does not use the ©
angle: the tool already features a self-adapted o parameter that controls the strength
of mutation operators and effectively regulates the amount of exploration. As for
diversity preservation and promotion, uGP provides different mechanisms such as
fitness sharing, fitness scaling, delta entropy, and fitness holes, which encapsulate the
diversity-versus-quality problem into the comparison of individuals, either during
selection of parents (fitness hole) or selection of survivors (scaled fitness) [79, 34, 88].

Moreover, uGP does not make any assumption about the regularity of the fitness
function, which deprives a difference between two fitness values of any meaning
beyond its sign. The AQ criteria is thus not available in uGP .

We therefore replace the (AQ, AD,©) triple with a single measure defined as
such: we organize a tournament between all the parents and all the freshly evaluated
offspring, and reward the offspring proportionally to their rank. This procedure
provides a comparison of the new offspring’s fitness with respect to the fitness of
their parents, and a juxtaposition between all operators, finer for higher values of
Ly

As many other EAs, uGP is designed to target problems where the evaluation cost
is predominant over the time spent in the evolutionary loop: in this context, operator
execution times are often irrelevant. The only metric that could be of interest is the
individual evaluation time. However, the architecture has been designed to impose
the lowest possible coupling between the evaluator and the evolutionary algorithm.
For this reason, individual evaluation times are not reported to uGP , and anyway
are not required to be meaningful or correlated with the generating operator. Thus,
we do not consider the execution time 7.

23

3 - uGP

function policy.before_selections (operators) is
foreach op € operators do
op.pending <+ 0;
if op.enabled then
‘ op.tokens < A;
else
if current generation mod 10 = 0 then
L L op.tokens < 1;

function policy.select (operators) is

foreach op in operators where — op.enabled do
if op.tokens s 0 then

L return op;

nabled < {op € operators | op.enabled};
if enabled = () then

redistribute 3 tokens to all operators;
return any operator;

=e @D

selectable <— {op € enabled | op.tokens > 0};
if selectable = () then

redistribute A tokens to all enabled operators;
L selectable < enabled;

if Jo € selectable | 0.n = 0 then

return argmin o.n + o.pending;
o€selectable

return policy.real_select (selectable);

function policy.failure(operator) is
L operator.tokens < operator.tokens — 1;

function policy.success(operator) is
operator.pending < operator.pending + 1;
if —operator.enabled then
operator.enabled < True;
L operator.tokens <— A;

Algorithm 3: Execute at least once all operators before using DMAB and limit
failure rate

One feature of interest remains from Compass: the time window of the last 7

24

3 - uGP

values of (AQ, AD, ©). Our selection scheme will indeed use a window of past fitness
improvements to distribute rewards. However, the original version of Compass[69]
and the more recent work to pair it with DMAB [68] differ: while the former computes
a mean, the latter argues that using extreme values (i.e. the max) yields better
results, borrowing the idea from Whitacre et al.[109]. We choose to compromise
between the two options by computing a weighted sum of the values, assigning higher
weights to the highest values. The compromise is tuned by the discount € [0, 1]
parameter. A value of 0 gives the maximum, a value of 1 the mean.
This leads us to Algorithm 4 for reward distribution.

function policy.reward(parents, offspring, applications) is
tournament <— parents U offspring;

sort tournament by increasing fitness;

foreach (op, children) in applications do

tournament.rank(child)
)

improvement <— max —; il
children ournament.size()

op.window.append(improvement);
W < sorted op.window in decreasing order;
discount <+ 0.5;
Zy‘:"gize() W, discount’
Zyigize() discount? ’
// DMAB algorithm from DaCostal[32]
op.p Op.TlL+1 (op.nop.p+7);
op.n < op.n+ 1;
op.m < op.m + (op.p — 1+ 6);
op.M <+ max(op.M,op.m);
if op.M — op.m > ~ then
L reset all MAB statistics of all operators;

T4

Algorithm 4: Credit assignment

3.4.7 Operator Selection

The limitation we found to the DMAB selection scheme lies in the exclusive depen-
dence of an operator’s selection on its obtained rewards: in our case it means that,
during one generation, DMAB will select the same operator A times. Experimental
results will show that this strategy is suboptimal with higher values of A, because
when the DMAB takes the decision to exploit an operator it does so A times in a row
without any exploration, and conversely, when exploration is needed for an operator,
it is called A\ times even if it’s the worst available.

25

3 - uGP

We propose to mitigate this “all or nothing” intra-generational effect in the
following way: we consider that operator applications during the generation receive
immediately a fake reward equal to their current estimated reward. Put another
way, we simply increment the number of successful executions n for each successful
application while maintaining the three other MAB statistics (7, m, M) to their
original values. This makes the DMAB scores vary enough during the generation
to allow exploration to happen. After the evaluation of all candidates, the other
DMAB statistics are updated as usual using the actual rewards. We call this strategy
PDMAB (Parallelized DMAB).

function policy.real_select (operators) is
total n <= > oerators 0-1 + 0-pending;

~ log total_n
return argmax o.p + Cy/— o pending
o€operators

Algorithm 5: PDMARB strategy

3.5 A Novel Distance Metric

Defining a distance measure over the individuals in the population of an Evolutionary
Algorithm can be exploited for several applications, ranging from diversity preser-
vation to balancing exploration and exploitation. When individuals are encoded as
strings of bits or sets of real values, computing the distance between any two can be
a straightforward process; when individuals are represented as trees or linear graphs,
however, quite often the user must resort to phenotype-level problem-specific dis-
tance metrics. This work presents a generic genotype-level distance metric for Linear
Genetic Programming: the information contained by an individual is represented as
a set of symbols, using n-grams to capture significant recurring structures inside the
genome. The difference in information between two individuals is evaluated resorting
to a symmetric difference. Experimental evaluations show that the proposed metric
has a strong correlation with phenotype-level problem-specific distance measures
in two problems where individuals represent string of bits and Assembly-language
programs, respectively.

3.5.1 Introduction

Defining a distance metric in an Evolutionary Algorithm (EA) is both theoretically
sound and practically challenging — and ultimately useful. Being able to quantify the
similarity of two individuals can be used to promote diversity inside the population’s
gene pool, to avoid the over-exploitation of niches in the fitness landscape, to balance

26

3 - uGP

exploration and exploitation, and ultimately to ease the premature convergence
problem. Not surprisingly, the topic has been actively investigated by the evolutionary
community for many years.

From the theoretical point of view, two different aspects must be examined when a
distance is defined: the level at which it is calculated; and the purpose for calculating
it. On the other hand, for the practitioner the complexity involved in the calculation
is the key point.

The level at which a distance is defined may be: genotype, phenotype, or fitness.
The first and the last are probably the most easily definable: the genotype corresponds
to the internal representation of the candidate solution; the fitness is ultimately the
number, or numbers, returned by its evaluation. In biology, the phenotype is the sum
of all the observable characteristics of an organism that result from the interaction of
its genotype with the environment. It is hard to translate the concept in Evolutionary
Computation since the environment is missing, being indirectly defined by its effects
through the fitness function. Yet, in several classical problems — where an individual
is a fixed-length bit string, for instance — the need to distinguish between genotype
and phenotype is reduced. As a consequence, several works assimilate the fitness to
the phenotype.

In many other cases identifying phenotype and fitness is not an option. The
fitness is a synthetic information, and may not be able to convey the necessary data to
separate individuals. Even in the simplistic one-max problem two solutions may have
the same fitness without sharing a single gene (e.g., 70011” and ”1100”). Moreover,
the very same solution can be encoded in different ways. If the individual is the
movement of a robot, for instance, a single 90° turn could also be represented as two
consecutive 45° ones. More generally, whenever the genotype cannot be evaluated
directly by the fitness function, but needs to be transformed into something else,
fitness and genotype should be distinguished. In such scenarios, the phenotype
could be easily defined as the ”something else” in which the genotype needs to be
transformed into.

The final goal for measuring the distance between individuals plays an important
role. If the distance metric is used to avoid that a region of the search space becomes
overly populous, then it should be defined at the level of phenotype. However,
phenotype-level distances are often difficult to define or practically impossible to
calculate. Remarkably, NSGA-II, the widely used multi-objective evolutionary
optimizer, adopts a sharp and computationally efficient mechanism called crowding
distance to scatter individuals [35]. Here, the crowding distance may rely exclusively
on information from the fitness because the genotypes are fixed-length arrays of real
numbers, requiring no transformation; and the fitness is composed of several different
values, reducing the loss of information.

Conversely, if the distance metric is used to promote diversity in the gene pool,
balancing exploration and exploitation, it could be based on the genotype. For

27

3 - uGP

example, in [70] solutions are encoded as fixed-length bit strings and a metric
based on the hamming distance is used to assess the global diversity inside the
population. When the phenotypes are sets of real values of fixed size, computing the
distance between them is relatively straightforward, albeit not trivial [30]. However,
phenotypes in Genetic Programming (GP) [63], Linear Genetic Programming (LGP)
[19] and other complex EAs pose a harder challenge: calculating the similarity
between two binary trees, linear graphs, or generic compound structures is an open
problem.

This work proposes a new distance metric easily usable in different types of LGPs.
The distance is calculated quite efficiently at the level of genotype, yet it is able to
convey a considerable amount of information about the individual. Thus, it may
be used to reduce crowding in place of a phenotype-level distance. The proposed
approach computes the symmetric difference [2] between the global information
contained in two individuals; while the global information itself is evaluated resorting
to the concept of n-grams [100].

Experimental results demonstrate that the proposed distance is highly correlated
with other phenotype-level problem-specific distance measures, both where individuals
are string of bits and Assembly language programs. Further experiments show that
exploiting the proposed metric to perform fitness sharing in a sample problem
produces results comparable to using a phenotype-level metric.

Linear Genetic Programming

LGP is a variant of GP that evolves computer programs as sequences of instructions.
It was introduced by Markus Brameier and Wolfgang Banzhaf between the late 90s
and the early 2000s [11] [19], after the seminal work of Friedberg [44]. A traditional,
Koza-style GP encodes individuals as trees. Such tree GPs — or TGPs, as they are
sometimes called — are commonly used to evolve mathematical expressions: leaves
correspond to terminals, such as input values, constants or variables; inner nodes
represent functions. Quite differently, LGP evolves a simplified list structure that
represents a sequence of instructions in an imperative programming language. The
resulting individuals represent real programs, although in a simplified language, that
can grow to a significant complexity. Since their appearance, LGPs have been widely
used to solve both practical problems and perform theoretical studies.

In LGP the difference between genotype and phenotype becomes fully apparent.
The genotype is the internal, list-based representation; the phenotype is the actual
program resulting from the interpretation of the genotype; the fitness is the final
result of the evaluation of the program (Figure 3.2).

28

individualA.s
ADD
AX, BX
e L —
w individualA.s S ! !
& 4 . . .
E labell: ADD AX, BX <>E individualA.exe
@) 7))
(99)
= INZ label1 v
T P
o =
L

|
|
|
|
|
|
|
|
|
|
|
|
SUB 55, CX :
|
|
|
|
|
|
|
|
|
|
|
|

GENOTYPE

Figure 3.2. Distinction between genotype, phenotype and fitness value in an
example with LGP used for Assembly language generation.

Symmetric Difference

In set theory, the symmetric difference [2] of two sets A and B is defined as

AAB=AUB-ANB (3.2)

In practice, the symmetric difference contains all elements which are in either of
the sets and not in their intersection. The Venn diagram of the symmetric difference
is reported in Figure 3.3.

Considering the set as the information carried by an individual, the symmetric
difference appears a plausible formalization of the intuitive idea of distance: when
two sets are almost completely overlapping, their symmetric difference is very small;
when they are completely separated, it is big.

Moreover, the symmetric difference exhibits useful properties for a distance: it
is commutative (A A B = B A A); and the empty set is neutral (A A @) = A and
AN A=(). The symmetric distance is also associative, but this fact is negligible in
this application.

Fitness Sharing

When a reliable distance metric is defined, one useful application is to exploit it for
fitness sharing, one of many methods to enforce diversity inside the population of an

EA [91] [85].

29

3 - uGP

Figure 3.3. Venn diagram of the symmetric difference. The area corresponding
to A A B is depicted in grey.

The general idea of fitness sharing is to artificially decrease the fitness of individu-
als in crowded areas of the search space. The fitness f; of an individual I; is modified
in a fitness f/ = f/m;, where m; is dependent upon the number of individuals in a
given radius o, from individual [;, and their distance from the individual itself. In
particular,

N

mi =Y sh(l;, 1)) (3.3)

J=0

where N is the number of individuals in the population, and sh(Z;, I;) is defined
as

oy [1= (e (1) < o,
sh(1;, 1;)
O d(IZ,]J) Z Og

(3.4)

where o is once again a user-defined radius, and d(I;, I;) is a distance measure
applicable to the individuals’ representation. « is a constant parameter that regulates
the shape of the sharing function. In many practical cases a = 1, with the resulting
sharing function referred to as the triangular sharing function [49].

30

3 - uGP

3.5.2 uGP Approach

In LGP, Shannon entropy can be effectively used as a metric to assess the diversity
in a population at a given generation [28]. The entire population is considered a
message, and each allele appearing in an individual is a symbol: entropy is then
computed on the basis of the number of different symbols and their occurrences.

In a preliminary work [99], a variant of this approach is sketched. Instead of
considering just the alleles of each gene, their disposition inside the individual is also
taken into account. A symbol is no longer considered equivalent to a single allele,
but to the allele and its position inside the individual instead. Following the idea
that recurring structures might possess meaning, n-grams of nodes are also regarded
as symbols. An n-gram is a group of n items from a longer sequence. For example, a
b, b c and c d are all 2-grams from the sequence a b ¢ d, whilea b candb ¢ d
are 3-grams. Very often n-grams are used for the purpose of modelling the statistical
properties of sequences, particularly natural language [100].

Building on the same principles, a generic genotypic Universal Information
Distance (UID) for individuals in LGP is proposed. Considering two individuals ;
and [;, the UID is defined as

UID(L,. 1) = |S(1) & S(1,)| (3.5)

where S(I) represents the set of symbols in individual 7, A is the symmetric difference
as defined in Equation 3.2, and the operator |S| denotes the cardinality of set S.

Individual Iy,
©
©
®/ ©O\g @
o OE ®
©

Individual I,

Figure 3.4. Example of symbols computed for alleles and (2,3)-grams for two indi-
viduals. Symbols are represented as Greek letters inside hexagons, alleles as Roman
letters inside circles, while their position in the individual is reported in a square. The
symbols common to the two individuals are e (corresponding to allele F in position
4), n (2-gram B—C), 6 (2-gram C'— D) and X (3-gram B—C — D). The UID between
the two individuals is thus |S(A) A S(B)| = |S(A) U S(B) — S(A)NS(B)| = 16

31

3 - uGP

In other words, the UID between two individuals is the number of distinct symbols
they do not have in common. Intuitively, when two individuals share many common
symbols, the UID will be small; on the contrary, if they have no symbols in common,
their UID will be high. An example is reported in Figure 3.4.

When used in practice, symbols for each individual are computed resorting to a
hash function of the n-grams and alleles. It is interesting to notice how the proposed
UID, that acts at genotype level and is quite straightforward to compute, could
provide the same information of more computationally intensive distance metrics
that are evaluated at phenotype level: thus, UID could be used for fitness sharing,
delivering the same results as problem-specific metrics.

3.5.3 Experimental Evaluation

The correlation between the proposed UID and two phenotypic distance metrics is
examined, in two problems where individuals are encoded as strings of bits, and
as Assembly language programs, respectively. Experiments with an evolutionary
toolkit that supports LGP [88] are then performed for the two problems, and the
effectiveness of UID for fitness sharing is compared to the previously considered
phenotypic distance metrics.

In the all the experiments, the computation of UID is limited to n-grams of order
2 and 3, as a trade-off between computational efficiency and thoroughness of the
approach. Symbols are computed resorting to the DJB! hash function.

Considered Problems

The proposed approach is tested on two benchmarks: NK-landscapes, a NP-complete
problem where individuals are represented a strings of bits, and a simple Assembly-
language generation task.

NK-Landscapes

In the NK-landscapes problem [62], the individual is a string of bits of fixed length:
both the overall size of the fitness landscape and the number of its local optima can
be adjusted by tuning the two parameters, N and K. Generally speaking, values of K
close to N create more irregular landscapes. Albeit simple, this benchmark is widely
studied in the optimization community, because it is proven to be NP-complete [108].
In the following experiments, values of N and K are very close, in order to obtain a
fairly rugged fitness landscape.

thttp://cr.yp.to/djb.html

32

3 - uGP

Assembly Language Generation

This second set of experiments targets a simple Assembly language generation
problem: the fitness of a program is the number of bits set to 1 in registry %eaz at
the end of its execution.

During the Assembly-generation problem, the minimum length of the variable
part of a program is set to 1 instruction, the while the maximum length is set to
1500 instructions. For the initial population, individuals are generated in order to
possess an average of 70 instructions, with a large standard deviation of 60 in order
to efficiently sample the search space. Table 3.1 recapitulates the possible genes
(instructions) appearing in the individuals.

Gene Parameters Prob.
<ins><sreg>, <dreg> ins={addl, subl, movl, andl, orl, | 0.33
xorl, compl}, sreg={"%eax, %ebx,
%ecx, %edx}, dreg={%eax,
%ebx, %ecx, Y%edx}
<ins><scon>,<dreg> ins={addl, subl, movl, andl, | 0.33
orl, xorl, compl}, scon={integer
in (0,255)}, dreg={%eax, %ebx,
Yoecx, Yoedx}

<ins><reg> ins={incl, decl, notl}, | 0.33
reg—{%eax, Y%ebx, Yoecx,
Yoedx }

Table 3.1: Possible genes appearing inside the individuals during the Assembly
generation problem. For each gene, all variables and corresponding values are listed,
as well as the probability of occurrence.

The fitness function used for this experiment is based on both the result of a
candidate program’s execution and the length of its code, and it is defined as

=10*- Z %eax|i]) + max(0,10* — length(I)) (3.6)

where %eazx]i] is the value of the ith bit of register %eax, while length(I) represents
the number of instructions of candidate program I. Thus, the most important
objective is to set to 1 bits in register %eax, while a small bonus is assigned to
individuals that perform the task with a moderate number of instructions.

33

3 - uGP

Correlation

An important result that it is possible to immediately esteem looking at the figures
is how much the proposed UID distance is well correlated with problem-specific
phenotype-level distances. Figure 3.5 plots the UID against the standard Hamming
distance for 500 random 50-bit individuals®. The cloud of points does not stretch
down to the origin, nor up to the maximum because it is quite unlikely to find two
identical strings, or two completely different ones, in a random pool.

45

40

35

30

900000

90000000

Hamming

15 41

10

0 T I I I I I T 1
0 10 20 30 40 50 60 70 80
UIiD

Figure 3.5. Correlation between the proposed UID distance and hamming distance
in the standard OneMax problem (50 bits)— Sample of 500 random individuals.

Figure 3.6, on the other hand, plots the same data for all individuals generated
during a run, until the optimal solution is reached. Since there is a strong similarity
between all individuals in the same parental group, the cloud stretches down to
distance zero. The correlation is even more evident than in the preceding example.

Figure 3.7 plots the proposed distance against the Levenshtein, or edit, distance
for 500 random programs on the Assembly OneMax problem. Here, differences are
more subtle and the number of overlapping values is reduced compared to the previous
case. The triangular shape of the cloud is indicative: the two distances are better
correlated for low values — that is, exactly when they are more useful: distinguishing

2Several values are overlapping.

34

3 - uGP

0 oe 7 T T T T T 1

0 10 20 30 40 50 60
uiD

Figure 3.6. Correlation between the proposed UID distance and hamming distance
in the standard OneMax problem (50 bits) — Individuals generated during a run.

between closely related individuals is in fact quite harder than discriminating between
very different ones. The Levenshtein distance is a computationally-expensive metric
that can be computed only at the level of phenotype. The proposed UID, on the
contrary, can be efficiently calculated at the level of genotype and it is effective in
estimating the distance between similar individuals.

Fitness Sharing

Since the proposed metric shows a heavy correlation with phenotypic distance metrics,
its effectiveness can now be tested in multi-modal problems where a fitness sharing
might help to spread the individuals over the search space. The aim of the following
experiments is to show how using the proposed UID for fitness sharing delivers the
same results as employing more rigorous problem-specific distance metrics, that are
also more computationally expensive.

The first experiments are performed on the NK-landscapes (or NK-model) bench-
mark, tuned to obtain a rugged fitness landscape: the UID is compared to a classical
Hamming distance [51]. A second set of experiments is then executed on a simple
Assembly-language generation problem, where the objective is to obtain a program
able to set all bits of register %eazx to 1. In this latter tests, the UID is weighted
against the Levenshtein distance [65].

35

3 - uGP

3500

3000

2500

2000

Edi

1500

1000

500

0 T T T T T T 1
0 200 400 600 800 1000 1200 1400

uiD

Figure 3.7. Correlation between the proposed UID distance and the Leven-
shtein distance in the Assembly OneMax problem (32 bits) — Sample of 500
random individuals.

In the LGP tool used for the experiments [88], u is the population size; A
represents the number of genetic operators applied at each generation, rather than
the offspring size; and o is the strength of the mutation operators. Each time a
mutation operator is applied to an individual, a random number r in the interval
(0,1) is generated: if r < o, the operator creates another mutation in the same
individual, and a new r is generated.

It is important to notice that the parameters of the tool used in the trials have not
been tuned to optimality, since the main objective of this experimental evaluation is
to assess whether the fitness sharing mechanism behaves comparably when different
distance metrics are applied with an equivalent radius, even with sub-optimal settings.

NK-landscapes

Parameters of the LGP tool used in the experiments are reported in Table 3.2. The
mutation operator in this case simply changes the value of a random gene, while the
one-point crossover selects a random cut point.

For each landscape, 10 experiments are run with the Hamming distance, and
10 with the UID, respectively, using equivalent radius measures derived from the
correlation described in Subsection 3.5.3. At the end of the evolution, the fitness of

36

3 - uGP

Parameter | Value Parameter Value
1 32 P(one-point crossover) | 0.5
A 32 P(mutation) 0.5
o 0.5 Max generations 50

Table 3.2: Parameters used during the experiments with fitness sharing in the
NK-landscapes benchmark.

the best individual (online fitness) and the average fitness of the final population
(offline fitness) are compared.

Fitness sharing with Hamming distance Fitness sharing with UID
Radius Online StDev Offline StDev Radius Online StDev Offline StDev
(Ham- fitness fitness (UID) fitness fitness
ming) (ave) (ave) (avg) (avg)
N=16, K=14, seed=1234567890
5 [[06710] 0.0167 [0.3655 [0.0256 [[[10 [06739] 0.0326] 0.3798 [0.0391
N=16, K=14, seed=4242424242
5 [[06774] 0.0318 [0.4094 [0.0142 [10 [0.6948 [0.0304 [0.4099 [0.0235
N=16, K=15, seed=1234567890
5 [[0.6543] 0.0228][0.3819 [0.0124 [10 [0.6468 [0.0109 [0.3901 [0.0137
N=16, K=15, sced=4242424242
5 [[06770] 0.0209 [0.3912 [0.0352 [10 [0.6671] 0.0256 [0.4067 [0.0316

Table 3.3: Results for the set of experiments on the NK-landscapes benchmark.
Experiments with fitness sharing with the Hamming distance (left) and the UID
(right); experiments with a corresponding radius are reported on the same line.

From results in Table 3.3 it is noticeable how, for the same NK-landscape, the final
online and offline fitness values are very close, as well as the average distance value
between individuals in the population. In fact, running a two-sample Kolmogorov-
Smirnov test on corresponding distributions for an equivalent radius reveals that the
distributions are undistinguishable with p < 0.01.

Assembly OneMax

This second set of experiments targets a simple Assembly language generation
problem: the fitness of a program is the number of bits set to 1 in registry %eaz at
the end of its execution. Table 3.4 summarizes the parameters used for the LGP
tool in this experiment.

The mutation operator, in this case, can add a random instruction; remove a
random instruction; or change one or more parameters inside a random instruction,
with equal probability. The crossover can operate on one or two cut points, with
equal probability.

Table 3.5 shows the results over 10 experiments with each parameter configuration.

37

3 - uGP

Parameter | Value Parameter Value
i 10 P(crossover) 0.25
A 7 P(mutation) 0.75
o 0.7 Max generations 10

Table 3.4: Parameters used during the experiments with fitness sharing in the
Assembly language generation problem.

At the end of the evolution, the fitness of the best individual (online fitness) and
the average fitness of the final population (offline fitness) are compared.

Fitness sharing with Levenshtein distance Fitness sharing with UID
Radius Online StDev Offline StDev Radius Online StDev Offline StDev
(Leven- fitness fitness (UID) fitness fitness
shtein) (avg) (avg) (avg) (avg)
3 325,927 | 7,205.14 || 312,903 | 19,800.8 2 320,919 | 12,608.4 | 297,899 | 32,800.8
5 324,939 | 7,992.28 || 309,902 | 27,989.6 3 324,949 | 8,008.23 || 315,909 | 17,616.6
10 318,909 | 11,422.8 || 292,901 | 20,998.7 5 314,930 | 15,015.5 || 285,923 | 32014.3

Table 3.5: Results for the set of experiments on the Assembly-language generation
benchmark. Experiments using fitness sharing with the Levenshtein distance (left)
and the UID (right); experiments with a corresponding radius are reported on the
same line.

Again, the results for an equivalent radius are indistinguishable through a two-
sample Kolmogorov-Smirnov test with p < 0.01.

3.6 uGP Operators

Genetic operators, used within an evolutionary algorithm, are the tools allowing
modification and combination of individuals within a population of solutions, per-
forming in this way the optimization process. Operators are typically divided in two
main categories:

e Mutation operators, implemented with the aim to maintain genetic diversity
within the population modifying some characters within the individual genome;

e Crossover operators, able to combine genome informations extracted from
existing individuals in order to create new ones.

Normally, mutation operators require a single parent and generate a single new
individual, whereas crossover operators are working by selecting two parents and
generating one new individual. The parents selection is a critical step, since offspring
depends on genetic operators characteristics and on the quality of the genome on

38

3 - uGP

which they are applied. In uGP parents selection is performed using a mechanism
based on the tournament selection with fitness hole, as described in Section 3.2.

The number of times that genetic operators must be invoked to be applied to the
population is a value characteristic of evolutionary algorithm settings. This value
is set by the user and, as widely used within genetic computation community, it is
indicated through the Greek letter A. Due to the fact that each genetic operator
may create more than one individual, the offspring size can vary at each generation
and it is usually bigger than A. This means that, if a genetic operator is unable to
create a valid individual, its invocation is not considered as valid: the uGP | at each
evolutionary step, will make \ valid application of genetic operators.

In uGP the operators are all implemented starting from the class Operator, and
consequentially they are treated equally by the algorithm. Following the basic ideas
of C'++ project implementation, from the aforementioned abstract class pGP im-
plements two others generic classes, one for each macro-class of genetic operators:
standard genetic operators and group genetic operators. This choice was made also
for allowing the user to tweak the tool by adding their own custom operators in a
quite simple way: it is enough to implement some necessary method inherited by
the class corresponding to the category of operator that the user is implementing

Each operator should be implemented in order to have an internal check for
the static analysis of its own applicability on a particular context, defined through
constraints definition. Using this mechanism at the very beginning of the evolution,
the uGP tool is able to check constraints file and verify which operators can be
successfully applied to the particular structure of individual implemented. This
means that the tool can automatically verify the usefulness of a genetic operator, so if
it is capable to produce valid modification to a particular configuration of constraints
or not. If the operator is enabled by the user but uGP discovers that it is needless,
the tool disable it as default behavior. Otherwise, if the operator is disabled by
the user but the initial analysis finds that the operator is applicable (and then it is
potentially useful during evolution), uGP warn the user through a log message at the
verbose logging level. To help the user, as default behavior, uGP performs checking
all the operators and enabling only those applicable to the addressed optimization
problem.

Whenever a genetic operator is applied a random number [0,1] is generated: if
the random value is less than the current o, the process is iterated. When o is high,
this operator favors exploration, generating offspring that is quite different from the
parent; when o is low, the children individual is closer to the parent, thus favoring
exploitation.

39

3 - uGP

3.6.1 Mutation Operators

After the definition of common parameters involving all the operators defined within
the uGP tool, now we describe in detail each genetic operator. The first sections are
dedicated to mutation operators, that work by selecting a single parent for each of
their application:

o Alteration Mutation: this operator is working selecting one parent from the
population, and generates a single child individual. It copied the parent and
the selects a random node from its genome; the mutation is performed by
setting all parameters of the chosen node to a random value taken from the
possible configuration depicted within the constraints file.

e Insertion Mutation: the insertion mutation operator creates a new individual
by cloning the parent and adding a randomly generated node in a random
selected point of the genome. If the resulting individual is too big (with respect
to the constraints) it will be killed. Due to its particular behavior, that consists
in adding some genome parts, this operator will not work when individuals
constraints provides for a fixed length.

e Remowal Mutation: this operator is the dual of the previous one. It creates
a child individual by cloning the parent, then randomly selects a node inside
the child, and removes it. As aforementioned, there is an important check
on constraint length violation: if the obtained individual is smaller than the
minimum allowed size, the operator fails. It is important to notice that neither
this operator will work with fixed-size individuals.

e Replacement Mutation: as the previous mutation operators, it creates a child
individual by cloning the parent and replacing a random node of the individual
genome with a new, randomly generated one.

e Single Parameter Alteration Mutation: this operator performs by creating a
child individual by cloning the parent, then randomly selects a node (macro
instance) inside the child, and a parameter inside that node. The current
value of that parameter is then randomized. It is important to notice that this
operator will not work if all macros in the constraints file have no parameters.

o Subgraph Insertion Mutation: this operator creates a child individual by cloning
the parent, then inserts a whole random subgraph (instance of a subsection) at
a random valid position. If the resulting individual show a non-valid number
of subgraphs, the operator fails. This operator will not work on individuals
with a single subsection, or with a fixed number of subsections.

40

3 - uGP

e Subgraph Removal Mutation: this operator works creating a child individual
by cloning the parent, then selecting a whole random subgraph (instance of a
subsection) in the child, and removing it. If the resulting individual show a
non-valid number of subgraphs, the operator fails. It is important to notice
that this operator will not work on individuals with a single subsection, or
with a fixed number of subsections.

e Subgraph Replacement Mutation: the last mutation operator works similarly
to the previous ones: it creates a child individual by cloning the parent, then
selects a random subgraph (instance of a subsection) inside the child and
replaces it with a new random subgraph. When individuals possess only one
subgraph, this operator would basically create completely random individuals,
by replacing the only subgraph with a random one, so instead it fails.

3.6.2 Crossover Operators

Those described so far are mutation genetic operators, which work by selection only
one individual as parent. Now we start describing crossover operators, which select
two parents for creating offspring.

e One Point Crossover: the one point crossover operator takes two parent
individuals, and creates two children by recombining the parents using a single
cut point. This operator restores external references (outerLabel parameters)
correctly, differently from the imprecise crossover operators. It must be noted
that, in absence of outerLabel parameters in the constraints, the behaviors of
this operator and of its imprecise version are the same.

e One Point Imprecise Crossover: this version of the one point crossover takes
two parent individuals, and creates two children by recombining the parents
using a single cut point. This operators, differently from the previous one,
does not restore external references (outerLabel parameters) correctly. It must
be noted that, in absence of outerLabel parameters in the constraints, the
behaviors of this operator and of its precise version would be the same, so
instead this one fails.

e Two Points Crossover: this crossover operator produces two children individuals
from two parent individuals, by randomly selecting two points of cut inside
corresponding subgraphs (instances of subsections) of the two individuals, and
swapping the parts between the two points of cut. This operator restores
external references (outerLabel parameters) correctly. In absence of outerLabel
parameters in the constraints, the behaviors of this operator and of its imprecise
version are the same.

41

3 - uGP

e Two Points Imprecise Crossover: this operator produces two children indi-
viduals from two parent individuals, by randomly selecting two points of cut
inside corresponding subgraphs (instances of subsections) of the two individuals,
and swapping the parts between the two points of cut. Differently from the
previous version, his operator does not restore external references (outerLabel
parameters) correctly. In absence of outerLabel parameters in the constraints,
the behaviors of this operator and of its not imprecise version would be the
same, so instead this one fails.

3.6.3 Scan Operators

In GP there are present also categories of special purpose operators, deeply different
from the ones described in literature and eventually useful for particular application.
The choice of using genetic operators belonging to these categories must be thoroughly
analyzed: these operators could cause an explosion in offspring dimension and greatly
slow down the optimization process.

e Scan Mutation BITARRAY : this scan operator performs a local quasi-exhaustive
search in the proximity of the parent individual. One parameter of type bitAr-
ray is chosen at random in the individual, and several children are produced
with values of the parameter close to the parent’s. The number of individuals
generated depends on sigma: every time a new individual is produced, a random
value [0,1] is generated, and if the value is less than the current sigma, the
process is repeated. At each iteration, an individual at a certain Hamming
distance from the parent is created. Once all individuals at a certain Hamming
distance have been created, the Hamming distance is increased. All individuals
produced will share the same allopatric tag. This means that at the most one
of the offspring will survive in the slaughtering step.

e Scan Mutation CONSTANT: it performs a local quasi-exhaustive search in
the proximity of the parent individual. One parameter of type constant is
chosen at random in the individual, and a child is produced for each possible
value of the constant parameter. All individuals produced will share the same
allopatric tag. This means that at the most one of the offspring will survive in
the slaughtering step.

e Scan Mutation FLOAT: the scan mutation float operator performs a local
quasi-exhaustive search in the proximity of the parent individual. It is similar
to the previous one but a parameter of type float is chosen at random in the
individual, and several children are produced with values of the parameter close
to the parent’s. All individuals produced will share the same allopatric tag.

42

3 - uGP

This means that at the most one of the offspring will survive in the slaughtering
step.

e Scan Mutation INNERLABEL: it performs a local quasi-exhaustive search in
the proximity of the parent individual. One parameter of type innerLabel is
chosen at random in the individual, and a child is produced for each possible
value of the constant parameter (each other node the label can legally point
to). All individuals produced will share the same allopatric tag. This means
that at the most one of the offspring will survive in the slaughtering step.

e Scan Mutation INTEGER: the last scan operator performs a local quasi-
exhaustive search in the proximity of the parent individual. One parameter of
type integer is chosen at random in the individual, and several children are
produced with values of the parameter close to the parent’s. The number of
individuals generated depends on sigma: from two to several tens of individuals
are produced, with a sampling of the range specified in the parameters. All
individuals produced will share the same allopatric tag. This means that at
the most one of the offspring will survive in the slaughtering step.

3.6.4 Group Operators

Genetic operators discussed hitherto were designed to be used in normal evolutionary
optimization. In this section are discussed the operators that operate only when
the group evolution is enabled; these operators are capable to exchange individuals
among groups, so they does not work directly on internal representation of individual
(i.e. genome level).

e Group Balanced Crossover: this group operator selects two groups from the
population and performs a random number of individual exchanges between
them; as result of the application of this operator two new groups will be
generated, characterized by the same size of parent groups.

e Group External Insertion Mutation: this is a group operator that randomly
select a group from the population, and generated a child group by adding an
individual that is chosen by an external evaluator provided by the user; in this
way could be possible to interfere the evolution, driving the optimization with
a non casual creation of a stronger group. This group will not work if applied
to a group containing the maximum number of individuals allowed by user
settings.

e Group K Fold Scan Crossover: this group operator randomly selects two groups
from the population, slices the biggest one in K parts, and moves each part

43

3 - uGP

to the a new clone of the other group; as a result, this operator generates K
offspring groups formed by an existing group in which a part of the bigger
group is added. This operator works correctly when the group on which will
be added individuals is not formed by the maximum numers of individuals
allowed within a valid group.

e Group K Fold Scan Removal: it is a group operator that randomly selects one
group, slices it in K parts, and creates K subgroups each missing one of the
parts; the aim of this operator is to identify useless individuals from the given
group and eliminate them. It is working if the size of the selected group is not
equal to the minimum number of individuals allowed.

e Group Random Insertion Mutation: as the Group Ezternal Insertion Mutation
one, this group operator selects a group from the population, and creates a
child group by adding a random individual selected between the ones present
within the whole population; then, a random value [0,1] is generated. If the
value is lower than sigma, the process is repeated. As constraints, the selected
group should be smaller in size than the maximum dimension allowed.

e Group Random Removal Mutation: As the previous one, this group operator
selects a group, but creates a child group by removing a random individual.
Then, a random value in [0,1] is generated. If the value is lower than sigma,
the process is repeated. In this case, the application of this operator works fine
if the selected individuals has not already reach the minimum size.

o Group Unbalanced Crossover: like the balanced one, this group crossover
operator selects two groups and moves randomly some individuals between
them changing their compositions and sizes, but without regarding to the size
of resulting groups.

e Group Union Intersection: this is a group operator that randomly selects
two groups from the population and tries to build new groups based on their
intersection and their union.

3.6.5 Random Operator

Within uGP there is also a particular random operator, useful just in some optimiza-
tion process; due to their characteristics, this operator is disabled by default.

e Randomizer: This genetic operator generates a new random individual starting
from the constraints’ description, in the same random way on which individuals
in the initial population are created. As the evolution goes on, individuals
created by this operator are probably going to be killed very soon, as their fitness

44

3 - uGP

will not be on par with individuals in the current population. Nevertheless, it
could be used to maintain diversity inside the population.

45

Chapter 4

Evolutionary Algorithms
Applications

This chapter describes a new technology designed and implemented with the aim of
improving the actual implementations of evolutionary algorithms, and application of
evolutionary algorithms to real optimization problems.

This technology is related to a new approach to evolution: the normal evolutionary
paradigm is joined with a cooperative scheme, that consists on group individuals
within the population in order to create group. The idea is to evolve each single
individual as a partial sub-optimal solution to the addressed problem, and considers
a group as a complete solution, formed by several partial ones.

This approach, called Group Evolution, foresees the implementation of new genetic
operators, new fitness values and new methods to apply evaluation of individuals
and groups.

Optimization processes discussed were ran all with the uGP EA tool described
in chapter 3; three problems will be faced:

e The first problem is the optimization of wetland design. A wetland is an
artificial basin in which running waters will be filtered and purified from
pollutants by contact with particular species of plants. The optimal position
of plants within the basin is an hard optimization problem that is normally
faced by experts and a trial and error approach, because there is no a precise
approach to reach the optimal configuration. Through the uGP and a dynamic
simulator of water flows, was possible to obtain result comparable with those
reached by human expert using an automatic optimization process.

e The second one is a feasibility study in which the aim is to generate malicious
code and inject it into existing executable file, without compromising its correct
behavior. Through this work, it was possible to identify some parts within the
executable that are accessible and modifiable pursuing our purpose.

46

4 — Evolutionary Algorithms Applications

e The last work described in this chapter regards the compaction of test programs
for microprocessors. The EA used in this work tries to remove some instructions
from the test programs to be compacted; if the faults coverage does not decrease,
it means that the removed instructions are usefulness. The goal of this work
is to create an automatic system able to reduce the number of instructions
forming a program for testing a microprocessor; in this way it is possible to
reduce the amount of time and memory requested to execute it.

47

4 — Evolutionary Algorithms Applications

4.1 Automatic Generation of On-Line Test Pro-
grams through a Cooperation Scheme

Software-based Self-Test (SBST') can be used during the mission phase of microprocessor-
based systems to periodically assess the hardware integrity. However, several con-
straints are imposed to this approach, due to the coexistence of test programs
with the mission application. This work proposes a method for the generation of
Software-Based Self-Test (SBST) programs to test on-line embedded RISC processors,
which is one of the most heavily impacted by the on-line constraints. The proposed
strategy exploits an evolutionary optimizer that is able to create a complete test
set of programs for a considered processor module relying to a new evolutionary
paradigm that exploits a cooperative scheme. Experimental results obtained high
fault coverage values on two different modules of a MIPS-like processor core. These
two case studies show the effectiveness of the technique and the low human effort
required for its implementation.

4.1.1 Introduction

The increasing use of electronic components based on microprocessors for safety
and mission-critical applications drives manufacturers to integrate more and more
dependability features in their products.

Aiming at increasing product dependability, as well as coping with market and
standard requirements, producers must include a series of auditing processes during
the lifecycle of the product and in-mission periodic testing campaigns for error
detection. For example, car manufacturers are adopting the ISO/DIS 26262 [59]
standard that demands the inclusion of the on-line self-test techniques as essential
test processes in critical electronic vehicle parts to insure high quality and mission
safety throughout the product useful life.

One of the most interesting techniques to achieve these results is based on the
application of on-line test programs. Usually, a set of test programs is first devised
to test the whole processor or some modules inside of it, and then periodically run
during the device lifecycle. It is possible to define a test program as a carefully
devised piece of code aiming at testing some part of the processor core resorting
only to the processor instruction set and exploiting the available resources of the
processor. Interestingly, the test program is not only in charge of exciting processor
faults, but also contributes to bringing results to an observable point. Even though
this technique was firstly introduced more than 20 years ago [103], it easily matches
with on-line testing requirements and it is therefore gaining again the attention of
the research community.

In Software-Based Self-Test (SBST) the application of test programs is carried

48

4 — Evolutionary Algorithms Applications

out by the very same processor core on the electronic device. The technique can be
easily applied to on-line testing performing periodically few simple steps:

e The mission application is interrupted;

e The test program is upload in the code memory;

e The test program is executed by the processor core;
e Results are gathered and save;

e The mission application restarts.

Test programs must follow all the requirements and constraints established for the
device under testing. Indeed, transforming an SBST test set to an on-line SBST test
set may not be possible, or it may require excessive effort. For example, as described
in [9] [15], on-line tests must preserve processor status, have a reduced execution
time, and preserve memory integrity. Several works presented in the literature show
why software-based techniques are often preferable to hardware approaches. However,
while SBST generation approaches are described in [81] [77] [73] [94], there is not
a mature technique able to cope with all the constraint introduced by the current
on-line testing requirements.

In this work we concentrate on the generation of SBST programs oriented to
microprocessor on-line testing. The proposed strategy exploits a new evolutionary
concept that automatically generates a whole set of test programs, taking advantage
of their complementarities. The proposed approach achieves very good coverage
figures, and requires lower generation time and memory footprint when compared
with analogous strategies. The final results gathered on a freely available version of
a pipelined microprocessor clearly cope with on-line constraints requiring low human
intervention.

4.1.2 Background

SBST is an emerging alternative for identifying faults during normal operation of the
product, by performing on-line testing [6]. Several reasons push this choice: SBST
does not require external test equipment, it has very little intrusiveness into system
design and it minimizes power consumption and hardware cost with respect to other
on-line techniques based on circuit redundancy. It also allows at-speed testing, a
feature required to deal with some defects prompted by deep submicron technology
advent.

Evolutionary algorithms (EAs) have been little, but steadily, used in the CAD
community during the past 20 years [98]. EAs provide an effective methodology for

49

4 — Evolutionary Algorithms Applications

trying random modifications, where no preconceived idea about the optimal solution
is required. Being based on a population of candidate solutions, they are more robust
than pure hill climbing. Both small and large modifications of existing solutions
are possible, but with different probabilities. Recombination makes it possible to
merge useful characteristics from different solutions, exploring efficiently the search
space. Furthermore, EAs are quite simple to set up, require no human intervention
when running and are inherently parallel. Finally, it’s easy to trade-off between
computational resources and quality of the results.

A versatile toolkit, named uGP (MicroGP), has been developed at Politecnico
di Torino in the early 2000s and it is now available under the GNU Public License
[88]. It must be noted that uGP does not aim at creating a program to solve
generic problems, but rather to optimize realistic assembly-language programs for
very specific purposes.

The last release of uGP is composed of three clearly separated blocks: the
evolutionary core that is able to generate syntactically correct assembly programs
using the information about the structure of the language from the constraint library;
every new generated program is then evaluated resorting to an external evaluator that
provides the evolutionary core with a measure of its goodness or usefulness (usually
obtained by simulation or fault simulation). Borrowing the term from biology, this
value is called fitness, and is used during the rest of the generation, together with
some structural information, for enhance and improve the test programs. At the end,
this process provides the user with the best test program.

The simplest, and probably most common, approach used for finding solutions of
complex compound problems with an EA is based on iterative runs. That is, since a
single solution is not able to solve the whole complex problem, the EA is set to solve
as much as possible of the problem. Then, the solved sub-problems are removed
from the original problem, and a new run of the EA is used to solve the remaining
part. Iteration after iteration, the EA provides a set of solutions that is cumulatively
able to solve the whole problem. However, the process is plainly inefficient, and the
final set is likely to be sub-optimal and oversized. Moreover, a deep knowledge of
the problem is required to identify the solved portions.

For instance, if the problem is attaining 100% fault coverage on a circuit, then at
each step detected faults are removed from the fault list (the compound problem),
and in each iteration the evolutionary test program generator is run against the
undetected faults. This approach can lead to good solutions, as [86], despite the fact
that test programs in the final test set are likely to cover multiple times the same
faults.

The approach proposed in this work is based on a recent development in the
evolutionary computation field, sometimes called group evolution or group selection.
The EA is asked to determine a set of solutions, cumulatively able to solve the whole
problem in an optimal way. Thus, only a single iteration is required, leading to a

50

4 — Evolutionary Algorithms Applications

better solution and a significant reduction of computational time [104].

4.1.3 Concurrent SBST generation of test programs for on-
line testing

The final goal of this work is to introduce an effective strategy to generate SBST
programs, suitable to be periodically run during the device mission. It is important
to notice that the proposed approach uses the fault coverage obtained by the test
programs against the stuck-at faults of the module under consideration as fitness
function, that is, as feedback value.

In a preliminary step, the user is required to select one by one every processor
module requiring a test program. Then, targeting the selected module, the user
is required to follow the proposed approach based on three steps, namely: ISA
distillation; concurrent test set generation; and final on-line set up. At the end of
the whole process, the proposed approach produces a complete test set to be applied
during mission time.

The proposed method requires low human intervention, as described in the
following steps:

ISA distillation

This step requires the intervention of the user, by wisely selecting among the processor
instructions belonging to the processor ISA, a reduced set of instructions able to
firstly excite and then propagate the results of the elaboration to a well-defined
memory location.

The instructions gathered during this step are placed into uGP ’s constraints
library. In addition, the user must also set uGP to limit test programs’ size, in order
to cope with on-line testing constraints.

This step can be performed using two different strategies:

Single instructions constraint The user collects and elaborates the constraints
library for pGP by gathering most of the instructions able to interact with the module
under consideration. The user must be able to gather different types of instructions
that prepare and apply the input values to the module under consideration, and
also observe the obtained results. However, the user is not required to organize the
gathered instructions in a particular way; instead, the whole organizing process is
left to uGP .

Atomic block-based constraint The user, supported on his/her own experience,
devises a block of instructions, called atomic block, that must be as general as possible,
so as to cope with different module requirements.

51

4 — Evolutionary Algorithms Applications

Roughly speaking, the atomic block targets the module under consideration by
applying suitable values to the module inputs using controlling instructions; then, the
test program executes a target instruction that excites the module; and finally, results
are propagated to the processor outputs through instructions that, for example, save
results in appropriate memory locations.

Figure 4.1 shows the structure of a sample atomic block oriented to test the
arithmetic module in a pipelined processor.

rA RNDM (constrained) value
rB RNDM (unconstrained) value
rE f(rA, rB)

sd_instr rE, M[rA]

=

Figure 4.1. Atomic block pseudo-code.

The first two instructions in Figure 4.1 (lines 1 and 2) load random values in
the registers rA and rB. The value in rA is a constrained random address value
(constrained) selected within a writable Test Memory addressing range. On the other
hand, the value placed in rB is purely random without any constraint. The target
instruction at line 3 manipulates rE by applying the function f(rA, rB). The selected
function must be able to excite the module under test. The value in rE is later stored
(line 4) in memory completing the observability task of the atomic block for testing
the considered module.

It is important to notice that even though the atomic block structure is fixed, in
the presented case, uGP is allowed to modify not only the random values but also
the involved registers.

Depending on the module under consideration, the user may devise not only one
atomic block but a set of them; and then, uGP can be set to freely combine them
during the generation phase.

Concurrent test set generation

The innovative idea is to generate the complete test set of programs for the module
under consideration at the same time, taking into account the constraints for on-line
testing. This goal is achieved exploiting Group Evolution [89], a new technique able
to optimize solutions composed of homogeneous elements. The approach cultivates
a population of partial solutions, and exploits non-fixed sets called groups. Group
Evolution operates on individuals and groups in parallel.

During the evolution, individuals are optimized as in a common EA, and concur-
rently groups are turned into teams. A group in itself does not necessarily constitute a
team: teams have members with complementary skills and generate synergy through

52

4 — Evolutionary Algorithms Applications

a coordinated effort which allows each member to maximize its strengths and mini-
mize its weaknesses. A team comprises a group of entities, partial solutions in our
case, linked in a common purpose. Teams are especially appropriate for conducting
tasks that are high in complexity, whereas leveraging individual cooperation. As a
result, the initial sets of random test programs slowly turns into coordinated teams,
where each member tackles its specific portion of the problem.

Algorithm details The algorithm proposed is population-based: we generate
and keep track of a set of distinct individuals or test programs which share the same
structure. In parallel, we manage a set of groups, each one composed by a certain
number of individuals. An individual, at any step, is part of at least one group.

The evolutionary algorithm exploits an external evaluator able to assign a fitness
value to every individual or test program, as well as to every group considering all
individuals composing it.

At the beginning of the evolutionary process, the initial population of test
programs is randomly created on the basis of the instructions selected in the previous
step (ISA distillation). Groups at this stage are randomly determined, and each
individual can be part of any number of different groups. Figure 4.2. shows a sample
population with 8 individuals and 4 groups. Notice for example that individual A is
part of only one group, while individual B is part of 3 different groups.

The whole evolutionary process follows a generational approach: at each evolu-
tionary step, called generation, a certain number of genetic operators is applied to
the population. Genetic operators produce new individuals and groups starting from
existing individuals or groups.

y 4 —— \
[\ \

\

\\—) =

Figure 4.2. Individuals and Groups in an 8-individual population

The creation phase is made of two different actions at each generation step:
Application of group genetic operators Application of individual genetic operators

53

4 — Evolutionary Algorithms Applications

Each time a genetic operator is applied to the population, parents are chosen and
offspring is generated. The children are added to the population, while the original
parents remain unmodified. Offspring is then evaluated, while it is not compulsory
to reconsider the fitness value of the parents again.

Group genetic operators work on the set of groups available in the population.
Each operator needs a certain number of groups as parents and produces some
offspring groups to be added to the population. The operators implemented are:
crossover, union, separation, adding-mutation, and removal-mutation.

Individual genetic operators work as in the classic EA on the population individ-
uals. However, individuals are selected for reproduction considering not only their
individual fitness, but also the fitness obtained by the group the individual belongs
to. The main novelty, regarding classic evolution, relies in the fact that every time a
new individual is generated, for each group the individual is part of, the algorithm
generates a new copy of the group including the new individual created by the genetic
operator. Since this process could lead to an explosion in the number of groups into
the population, the algorithm keeps a new group only if its fitness value is greater
than or equal to the one of the parent group.

At the end of every generation step, the group population is ordered and resized
according to the number of groups defined in the experiment configuration. If this
process leaves some individuals without any reference to a group, those individuals
will be removed from the population.

Adding-mutation with external support A new genetic operator is included
in the current EA for supporting the inclusion of an individual belonging to the
population to a group. This operation may represent a critical task, since the
evolutionary algorithm has no other information than the fitness values assigned to
the individuals, which may not provide any information regarding the performance
the group may achieve with the new individual. Thus, we implement a new genetic
operator that receives a group and a series of individuals and then externally evaluates
them in order to determine which individual is the most suitable to be added to the
selected group.

Final on-line set up

At this point, the process provides the user with a series of test programs for the
targeted processor modules. However, the final test set may require to be slightly
tweaked to actually comply with on-line constraints. Therefore, this step requires
once again human intervention, since the testing engineer must verify that the
final test set complies with on-line constraints. The advantages presented by this
approach are multiple, with respect to manual approaches, automatic approaches

54

4 — Evolutionary Algorithms Applications

based on classic EA, and random approaches. In particular, as corroborated by the
experimental results, the proposed approach:

e Reduces the generation time, since produces at every run a complete group of
solutions, instead of only a single one;

e Intrinsically thrusts a cooperative effort on the members of a group, reducing
the final number of test programs and coverage overlapping;

e Reduces test application time.

4.1.4 Case studies and Experimental results

The feasibility and effectiveness of the proposed approach have been evaluated on a
freely available processor core called miniMIPS [1]. The processor is synthesized with
an in-house developed library, resulting in a circuit containing 33,117 logic gates.
The miniMIPS architecture is based on 32-bit buses and includes a 5-stage pipeline.

In the presented work, we concentrate our efforts on two different modules
available in the processor: the address calculation module, involved mainly in load
and store instructions; and the forwarding unit, used to avoid processor interlocks
due to data hazards.

In order to run our experiments, we implement a framework that closes the loop
required by the evolutionary optimizer to automatically generate test programs. The
framework follows the description given in [15]. Roughly speaking, the whole process
is performed as follows: uGP creates a test program that is firstly simulated using
the RTL description of the processor core. At the end of this process, the logic
simulator gathers the information on the I/O signals of the processor core saving it
in a VCD file. Then, the VCD file is passed to a fault simulator that targets only
the stuck-at faults of the module under consideration. Then, a coverage value (FC%)
is calculated and, finally, it is fed back to the evolutionary optimizer closing the
generation loop.

The logic simulation was performed using ModelSim SE 6.4b by Mentor Graphics,
while the circuit fault coverage was evaluated using TetraMax v. B-2008.09-SP3 by
Synopsys.

Address calculation module

The address calculation module is in charge of calculating the addresses for memory
access operations performed when load and store instructions are executed. In
pipelined processor cores, this computation is usually performed by dedicated adder,
whose purpose is to sum an offset to a base value to address the RAM memory for
reading or writingvalue.

55

4 — Evolutionary Algorithms Applications

Usually, this adder is not part of the processor ALU, and thus it does not perform
any arithmetic computations required by instructions like add and sub. Testing an
adder is often deemed as a trivial task, but in the case of the address generation
module, controllability and observability are limited, and on-line requirements pose
additional constraints.

The criticalities in testing this module with a software-based approach are mainly
due to the type of instructions (load and store and all their variants) that activate
the address calculation. In fact, a test program including many of such instructions
may potentially induce some undesirable effects:

e Store instructions may corrupt the mission data and compromise the correct
resuming of the system;

e Load instructions may retrieve data from memory zones (i.e., the parts contain-
ing the mission application variables) whose content can hardly be forecasted
a priori, therefore compromising the signature generation, no matter how it is
calculated.

The adder performing the address calculation that belongs to the synthesized
miniMIPS processor is a separated unit within the execution stage, counting 342
logic gates and 1,988 stuck-at faults.

In the following we describe the outcome of the described phases while targeting the
address calculation module:

ISA distillation Targeting the address calculation module, we devise a constraint
library for pGP that exploits a similar atomic block as the one described in [14]; the
adopted structure is devised constraining the memory writing and reading spaces
in a strictly bounded area that comply with the on-line constraints defined in [14].
Intentionally, we decide not to include additional instructions in the constraint library.
The constraint library for the address calculation module is described in a xml file
containing 160 lines.

Concurrent test set generation The evolutionary optimizer was set to create
an initial population of 30 test programs containing a set of blocks that varies from
1 to 10. The number of groups allowed in the population is 20 and every group
may include from 2 to 15 individuals. In order to support the new genetic operator
described in section 4.1.3 a Perl script counting 150 lines was implemented. It is
important to mention that the external evaluator keeps the fault simulation results of
every one of the test programs created by uGP , such that in the case pGP requires
to evaluate an individual already evaluated, the fault simulation process can be
skipped.

56

4 — Evolutionary Algorithms Applications

3000

2800 A

2600 1\

2400

2200 [

2000 l :
1800 .r—"nl.-l
1600 1 ‘ L

1400 | 'I

1200 \

1000 \

0 100 200 300
——o—— FITNESS Best Group = -== - FITNESS Best Individual

Figure 4.3. Evolutionary run for the address calculation module

Final on-line setup In a preliminary run, the test program generation took
432 generations and about 141 hours of computation in a server running Linux
OpenSUSE 11.1 OS with 2 CPUs Intel Xeon E5450 @3.00 GHz and 8 GB of RAM,
the evolutionary optimizer produces a group composed of 15 individuals that are
able to cumulative reach 89.23% fault coverage. In synthesis, every test program
belonging to the final best group contains about 6 atomic blocks, and on average
the programs contain 35 instructions each. Executing the programs contained in the
best group requires about 700 clock cycles. However, each individual test program is
run in less than 100 clock cycles.

Let us assume that in order to correctly schedule and run the test programs to
execute during the mission cycle, it is required to interrupt the mission application
by no more than 75 clock cycles (7.5 us considering a clock frequency of 10 MHz):
then, the only modification required on the final test set of programs is to split one
of the programs that includes 5 more atomic blocks than the rest of the programs.
Thus, the considered program may be divided in two programs in order to do not
exceed the clock cycle budget established for every test program.

An additional experiment was performed in order to compare the obtained results.
In this case, we exploit an evolutionary approach based on iterative runs [86] creating
a final test set that obtained about 87% fault coverage generating 20 test programs
whose generation process and general characteristics are similar than the ones used
in the previous experiment.

It should be noticed that in the presented experiment using the Group Evolution
approach, even though the obtained coverage is slightly lower (less than 2%) than the
one obtained in [14], the final test set is most suitable for on-line testing considering

57

4 — Evolutionary Algorithms Applications

the final programs size and execution time. In addition, comparing the proposed
approach with [86], the new approach obtained better results also with regards to
generation time.

Forwarding unit

Register Forwarding (or data bypass) and Pipeline Interlock are functions managed
by combinational logic units included in a pipelined microprocessor, to avoid data
hazards.

The methods employed to avoid data hazards consist mainly in checking if there
is a data dependency between two instructions that are simultaneously in different
pipeline stages, and take suitable counteractions accordingly. Typically, when an
instruction is passing through the decode stage in the pipeline, the system checks
if its input operands correspond to the same register which any other instruction
already present in the pipeline is using as output. If this is true, there is a data
dependency between the two instructions and some actions have to be taken. In
this case, Register Forwarding must be activated: the input data for the second
instruction, instead of coming from the register file, are directly taken from the stage
where the first instruction produces them. In case instruction 1 is not yet in that
stage, Pipeline Interlock is used. Pipeline Interlock implies that the pipeline is stalled
until the first instruction reaches the stage in which the data is produced. At that
moment, Register Forwarding is used to send the result of the first instruction to the
stage where the second instruction needs its operands.

According to this working mechanism, there are different possible forwarding
paths and their activation depends not only on the existence of some data depen-
dency between two instructions but also on the stage in which the instructions
produce/require the data.

The forwarding unit, implemented in the miniMIPS processor core occupies
around 3.4% of the total number of gates of the processor, accounting for a total of
3,738 stuck-at faults.

ISA distillation In order to target the forwarding unit, we decide to use most of
the available instructions included in the miniMIPS ISA, since the module under
consideration needs to exploit the data dependencies between program instructions.
In this case, we do not rely to an atomic block specially devised for the considered
unit.

The constraint library devised for the forwarding unit counts 53 different instruc-
tions, and it is described in an zml file containing 624 lines.

Concurrent test set generation Once again, the evolutionary optimizer was
set to create an initial population of 30 test programs containing on average 60

58

4 — Evolutionary Algorithms Applications

different instructions. The number of groups in the population is 20 and every group
may include from 5 to 15 individuals.

The same Perl script used in the previous experience for the new genetic operator
was also exploited in this experiment.

Figure 4.3 shows a part of the concurrent evolution of individuals and groups
during the evolutionary run performed tackling the forwarding unit. The graph
shows on the X axis the first 350 generations or steps, while the Y axis indicates
the number of covered faults by both the best group (the highest line) and the best
individual (the lowest line) at every generation.

Interestingly, the reader can notice that the group trend is always incremental,
whereas it is different in the case of the individuals. In fact, it is possible to observe
that around the 90th generation, the best individual manages to cover 1,717 faults;
however, it seems that this outstanding individual is not able to efficiently support a
team, probably because its faults are already covered by less-performing individuals,
and then some generations later it is discarded from the population. In any case, the
coverage figures obtained by the best group outperforms along the evolution the best
values reached by the individuals, showing that the cooperation scheme pursued by
exploiting the Group Evolution is actually obtained at the end of the evolutionary
process.

Final on-line setup After 616 generations, taking about 94 hours of computa-
tional time in the same server described above, the evolutionary optimizer creates a
group composed of 17 individuals able to cumulative reach 85.93% fault coverage on
the miniMIPS forwarding unit. Summarizing, every test program belonging to the
final best group contains about 59 instructions. Executing all programs in the best
group takes 1,103 clock cycles, while each test program requires less than 100 clock
cycles to be run.

ori $18, $14, 35284
sw $18, 1024(80)

sw $5, 1024(50)

Iw $30, 0($0)

bne $7, $30, 1K32K
beq $23, $29, LK325

Figure 4.4. Sample from on of the program in the best group at the end of the
evolutionary run for the forwarding unit.

Figure 4 shows a small part from one of the programs composing the best group

59

4 — Evolutionary Algorithms Applications

at the end of the evolution.

Remarkably, it is possible to see different data dependencies between ALU in-
structions and LD/SD instructions (ori — sw), and also between LD/SD instructions
and BRN instructions (lw — bne).

In order to experimentally validate our approach, we compared the obtained
results in the forwarding unit with the ones obtained by a test set of programs
tackling the whole miniMIPS processor core that achieves about 91% fault coverage
against stuck-at faults. The test programs contained into the test set were developed
following state of the art strategies such as [81]. However, the stuck-at Fault Coverage
achieved on the considered forwarding unit reached only about 66%, thus proving
that specific test programs are required for it.

4.2 An Evolutionary Approach to Wetland De-
sign

Wetlands are artificial basins that exploit the capabilities of some species of plants
to purify water from pollutants. The design process is currently long and laborious:
such vegetated areas are inserted within the basin by trial and error, since there
is no automatic system able to maximize the efficiency in terms of filtering. Only
at the end of several attempts, experts are able to determine which is the most
convenient configuration and choose up a layout. This work proposes the use of an
evolutionary algorithm to automate both the placement and the sizing of vegetated
areas within a basin. The process begins from a random population of solutions
and, evaluating their efficiency with an state-of-the-art fluid-dynamics simulation
framework, the evolutionary algorithm is able to automatically find optimized solution
whose performance are comparable with those achieved by human experts.

4.2.1 Introduction

Nowadays, more and more specialists are becoming involved in pollution control, one
of the biggest problem of our time. Ecosystems are stressed by pollution. And organic
chemicals, while contributing to their destruction, can also make the water not usable
by animals and humans. To bring down the quantity of chemical dissolved in water
in the latter case, researchers proposed a new approach, based on bio-geochemical
processes naturally present in the environment, adopting free surface constructed
wetlands. A wetland consist of a small artificial basin, partially flooded with water
and containing many vegetated areas, in which the water flows and undergoes a
natural filtering process from pollutants due to particular plant species, which are
able to use these waste products to support its vital functions (e.g., Phragmites
Australis, Typha Latifolia); vegetated areas have to be distributed over the wetland

60

4 — Evolutionary Algorithms Applications

in order to increase the filtering performance.In the last half century a great effort
in wastewater treatment has been performed with special plants able to process
polluted water. It as been demonstrated that this approach is more useful with point
sources, characterized by little quantities of fluid polluted by high concentrations of
chemicals, rather than point sources, characterized by big quantities of fluid polluted
by low concentrations of chemicals.

To design a wetland, experts creates several configurations which are then pro-
cessed by a tool to simulate the flow of water and to calculate the efficiency in terms
of filtering of the configuration sets. The classic trial and error approach is the only
viable one, since it is not possible to implement an inverse function able to identify
with precision positions and characteristics of each vegetated area to be inserted in
the basin, in order to obtain an optimum filtering capability.

The proposed idea is to evolve a population of individuals, each one representing a
complete configuration of vegetated area. The evolutionary approach is autonomously
able to optimize the performance of the wetland, while an appropriate set of con-
straints enforces realistic configurations. The preliminary study of a system able to
automatically calculate solutions for the problem was verified in [36]. Here, the goal
it to tackle a realistic problem by include different constraints.

4.2.2 Background
Wetlands

Cowardin [31] defines a wetland as an ecosystem transitional between aquatic and
terrestrial ecosystems, in which the water table is usually at or near the surface or the
land is covered by shallow water [13]. Before the extensive land reclamation through
the last century, wetlands were common along the coasts, where they functioned as
a natural buffer between inner agricultural zones and coastal areas. Today there is
a pressing necessity to restore these areas and their role, defining optimal design
criteria to obtain, at reasonable costs, the best removal efficiency.

The removal efficiency of natural and constructed free-surface wetlands is con-
trolled by the time spent by contaminants into vegetated zones [78]. The role of
vegetation in wetlands is important for two main reasons: water passing through
vegetated zones decreases its local velocity, favoring the sedimentation of suspended
solids; and biochemical processes determine a transformation of the dissolved sub-
stances. In combination with bathymetry, distribution of vegetation can produce
preferential pathways of water (hydraulic shortcuts) that can substantially decrease
the overall efficiency of a wetland. Removal efficiency is also affected by other hydro-
dynamic characteristics, as water depth and discharge, both dependent on vegetation
distribution and density [5] [61]. Wetlands constructed for waste water treatment
are often designed considering an average water residence time [61], even though

61

4 — Evolutionary Algorithms Applications

these methods cannot adequately describe spatial configurations of vegetation in real
wetlands [60]. These models, usually called zero-dimensional, are often used because
they require few data and are easy to manage. Nevertheless, zero-dimensional models
produce significant inaccuracies in the prediction of the efficiency of contaminant
removal. Other one-dimensional models with transient storage were recently used
[67] to assess the contaminant removal in a constructed wetland, giving in most cases
a good approximation of breakthrough curves.

These models, however, fail to describe different flow paths across the vegetation
and through main channels. The evidence of different flow pathways results in a
clear bimodality of the solute breakthrough curves, that account for the different
characteristic time scales of water residence time. Since spatial heterogeneity of the
variables assumes a prominent role in determining the removal efficiency, the use
of a more detailed two-dimensional approach becomes necessary to obtain reliable
predictions.

Evolutionary Algorithms

Natural evolution is not a random process: while it is based upon random variations,
their preservation or dismissal is determined by objective evaluations. Darwinian
natural selection is the process where only changes that are beneficial to the individuals
are likely to spread into subsequent generations, and sometimes it strikingly resembles
an optimization process. Unlike most optimization processes, however, it does not
require the ability to design intelligent modifications, but only the assessment of the
effect of random modifications.

Several researchers, independently, tried to replicate such a characteristic to solve
difficult problems more efficiently. Evolutionary computation does not have a single
recognizable origin, but most scholars agree on identifying four macro areas: genetic
algorithms [55], evolution strategies [92], evolutionary programming [41], and genetic
programming [63].

The different paradigms share some key concepts, and can be cumulatively called
evolutionary algorithms. An EA starts by generating an initial set of usually random
candidate solutions for the given problem. These solutions, called individuals, are
evaluated using problem-dependent metrics. The result of the evaluation, that is,
the goodness of the solution, is termed fitness. The set of candidate solutions, also
known as population, is then sorted on its fitness values. Subsequently, offspring is
produced by altering the existing solutions: often the best solutions have a higher
probability of being selected for reproduction. Offspring might be added to the
existing population, or replace it entirely; in any case, some of the worst solutions
are deleted before iterating the process, starting from reproduction. When a given
stop condition is met, the iterations end and the best solutions are returned to the
user.

62

4 — Evolutionary Algorithms Applications

Being based on a population, EAs are more robust than pure hill climbing.
Both small and large modifications are possible, but with different probabilities.
Sexual recombination makes it possible to merge useful characteristics from different
solutions, exploring efficiently the search space. Furthermore, EAs are quite simple to
set up, and require no human intervention when running. They are inherently parallel,
and a nearly-linear speed-up may be easily achieved on multiple instruction/multiple
data (MIMD) architectures. Finally, it’s easy to trade-off between computational
resources and quality of the results.

4.2.3 Proposed Approach

In the proposed approach the design of a wetland is fully automated exploiting an
evolutionary algorithm. Each individual of the population represents a complete
configuration of the wetland, expressed as a set of patches of vegetation arranged
within the area of the basin; each vegetated area is defined by its position and diameter.
The evolutionary algorithm handles the creation and evolution of individuals, while
the actual evaluation is performed by a tool able to simulate the flow of water within
the wetland and calculate the filtering capacity. Differently from the feasibility study,
candidate solutions has been provided more stringent constraints in order to evolve
towards optimized solutions close to a real ones. This constraint has been applied to
the maximum area that can be covered by vegetation patches; the limit was set at
60%, in order to push the evolution towards the realization of optimized individuals
describing more closely a configuration similar to those that are actually made.

Mathematical Models

A wetland is modeled using a two-dimensional depth averaged model that solves
hydrodynamics, coupled with a two-dimensional solute transport equation with a
first order decay term. Under the assumption of hydrostatic pressure, stationary
flow, and negligible wind and Coriolis forces, the depth-averaged velocity field and
water depth can be described by the following equations [112]:

o(hU) O(hV)
o oy 0 (4.1)
o(hU?) oUv) 0z 10(hTy) 10(hTwy) Tow
or * oy _ghﬁ_x i p Oz - p Oy p (42)
o(hUvV) oV 0zs 10(hT,.) 10(hT,,) Tb
e T M et p (4.3)

The quantities U and V represent the depth-averaged velocities [ms™!] along the
x and y direction, respectively, h is the water depth [m], z, is the water surface

63

4 — Evolutionary Algorithms Applications

elevation [m], and p the water density [kgm™3]. The bed shear stresses 7, and
Ty [N'm™?] in the z and y direction respectively are calculated using the following
relationships:

Toe = peympUvVU? + V2 (4.4)
Toy = pCfme\/ U2+V2 (45)

In the case modeled here, the bed slope is set to zero and the investigated velocity
range makes it possible to consider the friction coefficient as a constant. This
assumption generally holds where the velocity is sufficiently fast to assume turbulent
flow. For a flat bathymetry, the bed slope coefficient my, is unitary and the coefficient
of friction ¢; can be rewritten using Manning equation as ¢; = gn?h~1/3. The effect
of different vegetation densities is modeled here using different values of Manning
roughness coefficient. This choice is confirmed by many studies that relate vegetation
density, stem diameter and flow conditions to an equivalent roughness coefficient [9]
[50] [110]. Fluid shear stresses T;;(i,j = x,y) associated to viscous and turbulent
effects, are determined using the Boussinesq assumption:

ou

Tow =2p(v + I/t)% (4.6)
ou oV
Ty = Ty = plo-+)5+ 50) @)
ov
Ty =2p(v+ 1) (4.8)

ox

where v, v, are the kinematic and eddy viscosities [m?s™!]. Since the kinematic
viscosity has a lower value than the eddy viscosity, it can be neglected in most cases.
For a turbulent flow regime, as it was assumed in this preliminary study, v, can
be expressed using Elder depth-averaged parabolic model [38] as v, = aU,h, where
the term « is an empirical coefficient [—] and U, is the shear velocity [ms™!]. For
longitudinal dispersion Elder proposed a value of the coefficient a of about 5.9 [38§],
for transverse dispersion, Fischer found that « varies between 0.3-1.0 in irregular
waterways with weak meanders [40]. In accordance with [7] [112] a value of 6.0 and
0.6 was chosen for the longitudinal and transversal dispersion coefficients respectively.

Solute transport of a reactive tracer through the wetland is simulated with
a depth-averaged solute transport model accounting for the effect of advection,
turbulent diffusion, dispersion and decay. In the simulations, the tracer is assumed
to interact with vegetation and the chemical breakdown due to the permanence in
the vegetated zones is modeled with a first order decay relationship. The equation
governing the transport of a reactive tracer in the wetland can be modeled as:

o(hUC) IRV C) 0 oC 0 oC
= — 2 (hE. 22+ = (hE. —
ox * oy 8:U(h x@a:)—i_@y(h Y 0y

) — BAC (4.9)

64

4 — Evolutionary Algorithms Applications

where C' is the depth-averaged solute concentration [kgm ™3], U, V are the vertically
integrated velocity components under steady flow conditions [ms™!] in the x, y direc-
tions respectively. Coefficient E,, F, [m?s™!], account for both turbulent diffusion
and dispersion. A constant homogeneous value of E,, E, is chosen (107°m?s™1)
throughout the entire domain.

Evolutionary Core

The EA used is uGP[88], is a versatile toolkit developed at Politecnico di Torino in
the early 2000s and available under the GNU Public License from Sourceforge!. GP
original use was to assist microprocessors’ designers in the generation of programs for
test and verification, hence, the Greek letter mu in its name. But over the years has
been used as optimizer in a much wider spectrum of problems, including numerical
optimizations.

The algorithm initially creates a set of random candidate solutions to the given
problem, that are then evaluated, and sorted by their fitness value (see Subsection
4.2.3). Offspring is then created favoring the fittest individuals and also trying to
favor diversity among the population. New candidate solutions are then evaluated
and added to the initial population. Solutions are again sorted, and the worst ones
are removed until the population returns to its original size. The process is then
iterated, starting from offspring generation, until a stop condition is reached.

Two categories of genetic operators are used to generate the offspring: mutations,
or single-parent operators, and crossovers, or recombination operators. Mutation
operators create new candidate solutions by altering one single parent solution;
crossover operators mix the information contained in two or more parents solutions
to create offspring. The most common operators are available inside uGP, but the
toolkit also implements differential evolution, and other operators specially calibrated
for real parameters.

Individuals are internally represented as a multigraph, uGP relies on a external
configuration file constraints the multigraphs to sensible structure, and maps the
internal individuals to valid solutions of the problem. In the specific context, each
individual encodes a candidate configurations of the wetland, that is, it details the
features of the several patches of vegetation, with variable number of occurrences
from 20 to 35, that are going to be placed in the water; the order in which the
patches are described within the individual is irrelevant. All islands are assumed to
be of circular shape. Since they can overlap, however, they can create more complex
shapes. An island is characterized by its position (z, y coordinates expressed in real
values) in the wetland and its radius; in this simplified approach friction value is

http://ugp3.sourceforge.net/

65

4 — Evolutionary Algorithms Applications

always the same. An island’s position is constrained by the size of the wetland; its
radius is constrained following the minimum and maximum size of actual islands of
vegetation used in real wetlands.

Fitness Function

The definition of an appropriate fitness function is a key aspect in the use of an EA.
The process of evolution is based on differential survival, that is, different individuals
must have a different chance to spread their offspring in future generations. In the
artificial environment modeled by an EA, it is essential that different individual
get different fitness values. It is a common practice to include in the fitness some
heuristic knowledge, in order to help the EA explore the most promising regions of
the search space.

In puGP, the fitness is not a single value but a vector of positive coefficients. The
individual A is considered to be fitter than the individual B if the first j elements of
the two fitness vectors are equals, and the (j 4+ 1) — th element of the A’s fitness is
greater than the (j 4+ 1) — th element of the B’s fitness. In the context of wetland
optimization, three values have been used.

In order to evaluate the goodness of a candidate wetland layout, a simulation
of the hydrodynamic field is performed extracting computed values of discharge
Q[m3s7!] and water depth h at the inlet and at the outlet sections of the wetland.
During the simulation, a reactive tracer with a known concentration is injected at
the inlet. Thanks to the presence of vegetation the tracer is gradually degraded and
reaches the outlet section. Mass flux M [kgs~!] passing through these sections is
measured, and the difference between the two values represent the first parameter
of the fitness function. In order to obtain the optimal vegetation distribution, this
difference must be maximized.

On the other hand, a candidate layout must still let the water flow, avoiding
configurations where the vegetation is so dense to make the flow impossible. The
energy requested by the water to flow can be represented by the difference between
the water depth at the inlet and outlet section. This difference represents the second
parameter of the fitness function. This parameter is minimized by the algorithm:
solutions that completely block the water flow are then heavily penalized.

The third and last fitness parameter measures the difference of discharge between
the inlet and the outlet sections of the wetland. This value assures that the stationary
flow conditions are reached and that the mass fluxes are finely computed. This
discharge difference is strongly minimized.

66

4 — Evolutionary Algorithms Applications

100 m

75m
INLET
25m .
0Om
Om 50m

Figure 4.5. Individual B: Representation of the phenotype of an individual
extracted from the first generation of evolution; dark areas show the distribution
of vegetation over the wetland surface.

OUTLET

>»

‘@

100 m 150 m 200m

100 m
75m
INLET OUTLET
25m
Om
Om 50m 100 m 150 m 200 m

Figure 4.6. Individual 7: Individual with percentage of vegetation next to the
maximum limit but without good filtering performance, due to the distribution not
optimized within the basin.

67

4 — Evolutionary Algorithms Applications

100 m

75m

OUTLET

>

INLET

25m .

0Om

Om 50m 100 m 150 m 200 m

Figure 4.7. Individual AAU: Representation of the individual that reached
the best optimization level. The percentage of vegetation is close to the
imposed limit to 60% but, thanhs to the best arrangement of vegetation
patches, its filtering performance is optimal.

4.2.4 Experimental Evaluation
Setup

The artificial basin take into consideration in this work has a rectangular shape with
dimensions 200m-long-by-100m-wide, with a water depth considered constant over
the entire surface and equal to 0.5m. The inlet and outlet sections are located at the
centre of the shorter sides of the wetland and have 10 m of size amplitude. In this
way can be reached two important objectives: the first, related to the proportions of
the area, concerns the total spread of the incoming water flow over the entire section
of the basin; the second, due to the constant depth, makes this basin more similar to
the natural ones and also makes it possible to simplify the system, which will not
consider any slopes of the basin’s bed [111] [112]. In addition, a constant discharge
of 0.2m3s~! is imposed at the inlet section. The rest of the wetland was considered
impermeable and laws of friction have not been applied at the side walls. In order
to monitor the filtering process of the wetland, within the inlet section is injected a
reactive solute with a constant concentration of 1kgm™3; in this way it is possible
to extract the fitness value (which indicates the filtering capability of the basin) by
calculating the average value of the concentration of this reagent in outlet area.

In order to simulate the hydrodynamic flow within the basin and the correct
values of decay related to pollutants, it has been necessary to set some parameters

68

4 — Evolutionary Algorithms Applications

into the simulation tool. The basin was defined through an adaptive triangular mesh,
so as to ensure a sufficient numerical stability and the required resolution in case
of steep gradients of the hydrodynamic and solute transport solutions. In addition,
was applied to each node a value of the Manning roughness coefficient and a decay
value, depending on the structure of each individual. In the particular configuration
of this experiment, in which we impose the constraints that cannot exist individuals
with vegetated area greater than 60 % related to the total area of wetland, it has
been chosen to simplify the decay coefficients, and the the structure of the vegetated
patches. In conclusion, it was chosen to apply a single law of decay to a node of
the mesh in which there is an island, or a zero coefficient otherwise; it was chosen a
decay coefficient equal to 57¢s~!. In the same way, Manning roughness coefficients
are set to 0.20sm ™3 to nodes with vegetation, and 0.02sm™ 3 otherwise.

As previously introduced, to achieve this automatic optimization system were
used two different tools, both open-source and freely available on internet. The tool
used for evolutionary algorithm is uGP version 3.2.0 (revision 198). To simulate and
evaluate each individual instead was used a tool called TELEMAC2D, part of the
wider set of programs open TELEMAC' [45] [52]. The code of the latter has been
specifically modified in order to extract information relating to fitness in the format
required by the uGP tool.

Each individual evolved by the evolutionary tool is converted to the TELFE-
MAC2Dformat, that consists of a map of basin’s nodes, and each of these nodes can
be covered or not by a vegetation patch. For this reason, each individual undergoes
a sort of pre-processing that inserts in the nodes of the map values associated with
vegetated areas. The process has been elaborated on a single machine, equipped
equipped with an Intel Core i7-950 CPU running at 3.06 GHz, and the whole system
was setting in order to process up to 4 individuals simultaneously, with an average
computation time of 90 minutes for each individual.

EA Configuration and Result Discussion

In order to obtain the results described in this work, the EA has been configured
in such a way to create a random initial population of 20 individuals (u = 20), on
which they are applied, at each generation of the evolution, 12 genetic operators
(A = 12) chosen among the 20 available in uGP tool. The entire process evolved
for 90 generations, for a total of 1070 individuals generated. During the conversion
of individuals to the format compatible with TELEMACZ2D, a certain percentage
of them was discarded because it was violating the introduced constraint about
maximum area that vegetation patches can cover.

Starting from a random population, the evolution has shown several interesting
features, which show the actual goodness of this approach. Among individuals of first
generations, its possible to find some as the individual B which are formed by a low

69

4 — Evolutionary Algorithms Applications

number of vegetated areas clearly separated between them, configuration that shown
a low filtration capacity; in particular, the configuration shown in Figure 4.5 ensures
a performance of pollutant reduction of 21% respect to the inlet concentration. As
evolution proceeds, grows the trend of evolutionary algorithm to generate individuals
which respect the constraint of the maximum coverage and, using the maximum
available number of islands, the EA is able to combine them to create complex shapes
able to modify the water flow and to optimize the filtering performance.

The figure Figure 4.6 and Figure 4.7 compares the two individuals 7 and AUU,
both characterized by a vegetated coverage very close to the imposed limit of 60%,
but with different fitness. Individual 7 belongs to the third generation, in which
evolution is still very close to the starting stage and, despite the use of maximum
coverage allowed, performances in terms of filtering amount to 27%. Individual AUU
instead represents the best configuration achieved in this experiment, comparable
to previous in terms of vegetated area; in this case the filtering capacity has been
optimized to achieve performances of 33.2%.

4.3 Towards Automated Malware Creation: Code
Generation and Code Integration

The analogies between computer malware and biological viruses are more than
obvious. The very idea of an artificial ecosystem where malicious software can evolve
and autonomously find new, more effective ways of attacking legitimate programs and
damaging sensitive information is both terrifying and fascinating. The work proposes
two different ways for exploiting an evolutionary algorithm to devise malware: the
former targeting heuristic-based anti-virus scanner; the latter optimizing a Trojan
attack. Testing the stability of a system against attacks, or checking the reliability
of the heuristic scan of anti-virus software could be interesting for the research
community and advantageous to the IT industry. Experimental results shows the
feasibility of the proposed approaches on simple real-world test cases. A short
paper on the same subject appeared at the 29" Symposium On Applied Computing
(SAC’14).

4.3.1 Introduction

Malware is a collective noun denoting programs that have a malicious intent — the
neologism standing for mal-icious soft-ware [74]. Specifically, malware usually denotes
hostile, intrusive, or simply annoying software programmed to gather sensitive
information, gain access to private systems, or disrupt the legitimate computer
operations in any other way. Since computer technology has nowadays emerged as

70

4 — Evolutionary Algorithms Applications

a necessity in various aspects of our day to day life, including education, banking,
communication, and entertainment, the threat posed by malware can’t be overlooked.

The most popular form of malware is represented by computer viruses, a term
coined by Fred Cohen in 1983 [26]. Viruses are programs able to replicate themselves
and infect various system’s files. As many other in computer science, the idea of
self-replicating software can be traced back to John von Neumann in the late 50s [107],
yet the first working computer viruses are much more recent. Creeper, developed
in 1971 by Bob Thomas, is generally accepted as the first working self-replicating
computer program, but it was not designed with the intent to create damage. On
the other hand, the virus Brain, written by two Pakistani brothers and released in
January 1986, is widely considered the first real malware [24].

Since the late 90s, computer malware creation has emerged as a commercial
industry with revenues skyrocketing to several million dollars a year [12]. Programs
that fight malware are generally called anti-virus. However, nowadays, the majority
of threats are not posed by viruses themselves, but by worms and trojans. The
former are self-replicating software able to send themselves to other computers on
the Internet or a network; the latter are software that emulate the behavior of an
authentic, legitimate program but also perform some fraudulent, hidden action.

Several terms may be used to describe specific malware, denoting their purpose,
replication strategy or specific behaviors. These terms are clearly non-orthogonal,
and the same program may be described by several of them. A spyware is a software
which is installed on a computer system to hijacks his personal and confidential
information. A keylogger is a particular type of spyware that records user interactions,
trying to steal passwords or credit-card data. A rootkit is designed to take control of
infected machine by gaining administrator access of the system — the name comes
from the term root under UNIX. A dialer is a program that connect the telephone line
to a fraudulent provider. A botnet is a remotely controlled software, and the machine
under control is sometimes called a zombie. Adware is generic advertising-supported
software whose functionality is to displays or downloads the advertisements to a
computer.

Another common classification distinguishes five different generations of computer
programs [96]: first generation malwares cause infection by simply replicating their
code into other software; second generation have additional functionalities, such as
the ability to identify files already infected (self-recognition); the third generation
marks the appearance of stealth techniques to avoid detection by anti-virus software;
the fourth-generation malware possess armoring procedures specifically designed
against removal and analysis (anti-anti-virus techniques); finally, malware of fifth
generation applies algorithms to obfuscate its code with every replication, altering
the program structure itself.

While the anti-virus industry is able to counter most of the menaces few days
after they appear, creating tools for protecting users against 0-day malware, that is,

71

4 — Evolutionary Algorithms Applications

unknown threats as soon as they appear, is a taxing problem [17].

This work proposes to exploit an Evolutionary Algorithm (EA) to create, or
rather, optimize, malware. The EA is used with two different goals: to make malware
undetectable by existing anti-virus program; to optimize the injection of the code
inside a given host, creating a Trojan horse. Producing new malware with negligible
human intervention could be extremely advantageous to anti-virus producers to test
and enhance their products. Moreover, the creation of trojans could also be used,
for example, to test the security of computer infrastructures.

4.3.2 Background: Stealth and Armoring Techniques

Anti-virus programs are designed to detect and remove all malicious applications,
assuring the continued integrity of a system. Nowadays, these applications are
perceived as needed in Windows-based operating systems (OSs): new versions of
this OS include anti-virus software directly in their basic distributions. Despite
Mac owners sense of security, recently, all main anti-virus companies also launched
products targeting specifically Mac OS. Still to a lesser extent, the same phenomenon
is visible for Linux.

The most simple, and widely used, technique for detecting malware is to recognize
specific fragments of code. This approach is called signature-based detection, because
the comparison is performed calculating and checking specific signatures. While
moderately efficient, this approach suffers from important drawbacks. The more
obvious is that to be effective, the specific malware must be already known, its
signature analyzed, recorded, and provided to end-users. However, this can be hardly
achieved because tens of thousands of new malware appear every single day?.

The traditional viruses are able to infect executable programs by appending their
code to the existing one [66]. This kind of attacks may be easily detected because
the size of the compromised program is modified. In order not to increase the host
size, the cavity viruses such as CIH or Chernobyl, both appeared in 1998, infect a
program by overwriting its code. This was possible due to the many empty gaps in
the file format for executables and object code called Portable Executable (PE). All
these malwares are easily detected resorting to signature scanning, and was able to
spread only thanks to the relative slowness in the process of getting virus samples
and delivering the new signatures to end users.

From the 3¢ generation, malicious programs start hiding their own code from
scanners through encryption [113]. The virus called Cascade, appeared in 1986,

2 Panda Security claims to have detected 27 million new forms of malware in 2012, an average of
73,000 per day. According to Kaspersky Lab, nearly 200,000 new malware samples appear around
the world each day, while, probably due to a different classification, McAfee reports the slightly
smaller figure of 46,000.

72

4 — Evolutionary Algorithms Applications

adopted a symmetrical encryption/decryption routine based on a XOR cipher.
Despite its simplicity, the ploy was demonstrated quite effective: the decryption
routine was so small that caused several false-positive, and even when it was correctly
detected, the anti-virus programs were unable to discriminate between the different
strains of the virus.

Concurrently to improvement in signature-based detection, new stealth strategies
were devised by malware authors, namely: oligomorphism, polymorphism and meta-
morphism. Oligomorphic malwares mutate their own decrypt routines. An example
of such technique is a virus called Whale, first detected in late 1990. Whale, as the
early oligomorphic malwares, could generate at most a few hundreds of different
encryption schemes, and thus could still be detectable using signatures. Newer ones
created decrypt routines dynamically, making harder for the anti-virus vendors to
write comprehensive signatures able to catch all variations. Indeed, history showed
that it was practically infeasible to catch every new strain of oligomorphic malwares
using simple signature.

Polymorphic malwares are even more able to escape signature-based detection.
A polymorphic engine is able to create many distinct encryption schemes using
obfuscation methods, such as dead-code insertion, unused register manipulation,
or register reassignment. The Tequila and Maltese Amoeba viruses caused the
first widespread polymorphic infections in 1991 [101]. In both oligomorphic and
polymorphic malwares, the code may change itself each time, but the function, that
is, the semantic, is never modified. Thus, anti-virus programs may simulate the
execution of a potential malicious application to recognize the pattern of operation.

To thwart such analyses, metamorphic malware denotes polymorphic programs
able to rewrite their own polymorphic engine. This is usually performed translating
their binary code into a temporary representation, editing such representation of
themselves, and eventually translating the edited form back to machine code [82]. A
well-known example is the virus Simile, also known as Etap or MetaPHOR, appeared
in 2002. Even more advanced stealth techniques are permutating malware, that,
instead of generating new instructions like polymorphic programs, modifies existing
ones, and thus does not alter their size. The term is used by the Russian virus writer
Zombie in a set of articles appeared under the title Total Zombification.

In 2002, the same Zombie created the Mistfall engine using code integration, a
technique similar to metamorphism applied to cavity viruses. The Mistfall engine
decompiles PE files; moves code blocks for creating space; inserts itself; regenerates
code and data references, including relocation information; and eventually rebuilds
the executable. The virus Zmist, or Zombie. Mistfall, was the first one to exploit
the technique, and scholars defined it “one of the most complex binary viruses ever
written” [102].

Most anti-virus programs cope with camouflage resorting to dynamic and static
heuristics analysis. In the former ones, a potential malicious application is executed

73

4 — Evolutionary Algorithms Applications

on a virtualized sandbox system, then the modifications brought about by the
program are checked relying on heuristic measures or specific triggers. On the
contrary, the latter are based on the mere analysis of the code.

While dynamic heuristics may look promising, they require a significant amount
of CPU-time and malware authors devised specific counter measures, called armoring,
against them. Fore instance, some malwares adopt stealth strategies to prevent an
infected system to report their presence, and made necessary to run the anti-virus
tools from a clean environment like by booting a live operating system from a portable
device. Other anti-anti-virus techniques prevents emulation using undocumented
CPU instructions, CPU intensive routines and other tricks, or detects whether a
virtualization is in progress and do not execute on emulated systems at all [93]. As a
result, effective static heuristics are an essential step in protecting from threats.

4.3.3 Automated Malware Creation

The idea of creating, or optimizing, malware in an automatic way is fascinating.
Moreover, starting from the choice of the term “virus”, the connections between
computer software trying to penetrate legitimate systems and biological infectious
agents that replicate inside the living cells of other organisms are more than evident
[96].

Since early 90s, hundreds of malware creation toolkits were introduced, enabling
individuals with little programming expertise to create their own customized malware.
The Virus Creation Laboratory (VCL) is one of the earliest, it was released in 1992 by
the NuKFE hacker group, and featured a nice user interface and documentation. The
same year, a felon under the name of Dark Avenger distributed a polymorphic toolkit:
The Mutation Engine (MtE). MtE enabled neophyte programmers to automatically
extend their malicious code into a highly polymorphic one. In the following years
similar toolkit appeared, like Dark Angel’s Multiple Encryptor (DAME) written by
the felon named Dark Angel, and the TridenT Polymorphic Engine (TPE) by Masud
Khafir.

An early approach to create malware through an EA was proposed, with noble
intents, in [75]. The approach was based on rearranging existing blocks of code,
and it was unable to create a virus at the level of a single instruction. Despite its
limitation, the very idea of autonomously evolved malware is still frightening [57].

This work proposes to exploit an EA to optimize malware, tackling two of the
main problems faced by anti-virus companies: 0-day detection and trojans’ infection.
Both approaches exploit the open-source EA called pGP [88], which is able of both
optimizing numeric values and handling assembly programs, adding, subtracting or
changing single instructions.

Tackling 0-day detection, the EA is used to automatically create a new strains
of attackers. The new malware is optimized in order not to be detected by existing

74

4 — Evolutionary Algorithms Applications

using static heuristic analyses. The result might provide some insights about the
weakness of adopted approaches. Conversely, tackling trojan generation, the EA is
given the objective to find weak spots inside a target host software, where malware
code can be seamlessly inserted without altering the target’s behavior. Such evolved
malware could be used to assess anti-intrusion mechanisms of secure environments.

Determining that the generated software is an effective malware and that the
full functionalities of an existing program have been preserved are two intractable
problems. However, the use of EA enable to find potentially acceptable solutions in
a limited amount of time and with limited computational resources.

Evolutionary Algorithms and yGP

EAs are stochastic search techniques that mimic the metaphor of natural biological
evolution to solve optimization problems [37]. Initially conceived in the 1960s, the
term EAs now embraces different paradigms like genetic algorithms, evolutionary
strategies, evolutionary programming, and genetic programming. All EAs operate on a
population of individuals; underlying, each individual encodes a possible solution for
the given problem. The goodness of every solution is expressed by a numeric value
called fitness, obtained through an evaluator able to estimate how well the solution
performs when applied to the problem. An evolutionary step, called generation,
always consists of two phases: a stochastic one where some of the best individuals are
chosen at random to generate new solutions; and a deterministic one, where solutions
are ranked by their fitness and the worst ones are removed from the population. The
process is then repeated until a user-defined stop condition is met.

Over the past decade, EAs have been successfully employed as optimization
tools in many real-world applications [88]. EAs provide an effective methodology for
tackling difficult problems, when no preconceived idea about the optimal solution
is available. While it is not usually possible to mathematically guarantee that the
optimal solution will be found in a finite amount of time, EAs have been demonstrated
able to perform much better than traditional optimization techniques in several
practical NP-hard problems.

1GP is a general-purpose EA toolkit developed by the CAD Group of Politecnico
di Torino in 2002 and now available under GPL [95]. While the first version was
developed specifically to generate assembly language [97], the latest release can be
used to tackle a wide range of problems, including numerical optimization.

In the uGP toolkit, the candidate solutions of a problem are represented as graphs,
while the problem itself is indirectly modeled as an external script that evaluates
each candidate solution and supplies the tool with a measure of its goodness. Due to
this loose coupling, ©GP can be used on different problems with no modifications
needed.

Configuration files in eXtensible Markup Language (XML) describe individuals’

75

4 — Evolutionary Algorithms Applications

structure and all necessary parameters such as population size, stop conditions,
number of genetic operators activated at each step. Since in the specific problem
individuals map sequences of keys, the related graphs are linear genomes.

Code Generation

In code generation, the EA is used to create a new malware, with the precise
intention not to be detected by existing scanners. While it would be theoretically
possible to make the EA discover the patterns of malware autonomously, it is far
more advantageous to feed the initial population with examples of working software
to obtain successful individuals in a far more reasonable amount of time. Thus,
the code of several malicious applications can be converted into the EA’s internal
representation of individuals. The evolution is then started, and the EA rearranges
freely freely materials from the individuals provided in the initial population in order
to create new malware. Fieure 4.8 shows the structure of the nronosed framework.

Malware
Code
individual.asm

Initial A ——N
[> Evaluator
Population 4 EA 4

W

Figure 4.8. Schema of the proposed framework for code generation.

The final goal of the evolution is to create malware not detected by anti-virus
applications. But during the evolutionary process it is possible to obtain non-valid
programs, unable to compile or not being executed correctly. Moreover, programs
that are compiled and executed successfully could lose the characteristics proper of
malware, becoming harmless software applications. To drive the evolution towards
the creation of malicious applications hard to detect, an individual is awarded a
progressively higher fitness value if it satisfies a series of requisites.

Firstly, the assembly code must compile without errors. Then, the obtained
executable must run without raising exceptions or fall into infinite loops. Since the

76

4 — Evolutionary Algorithms Applications

system is able to insert any kind of instruction into the code, infinite loops are of
course possible: this occurrence is taken into account by forcibly killing candidate
programs that do not terminate in a time several orders of magnitude superior to
that of the original code. Provided that the program runs correctly, the results
of its execution are then checked, to verify that its behavior is still compatible
with that of malware. Finally, the candidate malware is analyzed by the scan of a
group of anti-virus software. Since the experience is focused on testing the static
heuristics only, the chosen anti-virus programs perform the scan without relying
on their database. The final fitness value of each individual is proportional to the
number of anti-virus application it is able to deceive.

Even more than in other applications of bio-inspired methodologies, the evaluation
mechanism closely resembles a synthetic environment. Candidate malware programs
represent individuals of a species hunted by anti-virus software. Like living animals,
individuals in the EA may evolve features that help them escape the predation.
Emerging positive characteristics of this kind are passed on to individuals in the
successive generations, thus creating a natural defense strategies against anti-virus
predators.

It is interesting to notice that deciding whether an individual still retains the
characteristics of malware is a major issue of the evaluator: determining the behavior
of a program is in fact a Turing-complete problem [18], thus not approachable in an
automated way. As an approximation, a set of heuristics is here used to conclude if
a specific program can still be called “malware” with a reasonable probability.

Code Integration

In code integration, the EA is used to determine the optimal position for hiding
malicious code inside an existing executable. The goal is to perform the injection
preserving both malware’s and host’s functionalities, and with no a-priori information
about neither of them.

The EA is used to efficiently explore the search space of possible blocks to replace,
probing the target’s code. The potential attacker is interested in finding vulnerable
parts as large as possible, and it is important to notice that the search space for
blocks of variable size inside a program quickly explodes, even for a relatively small
target. Furthermore, finding potential vulnerabilities in compiled software is a task
that would involve an intelligent analysis of the target program’s behavior.

In order to empirically evaluate the vulnerability of a certain part of the code, the
part is overwritten with other code and the program is run, trying to verify changes
in the most common behavior. The injected code is quite simple, few assembly
instructions for displaying characters on the screen, nevertheless it is sufficient to
discriminate whether and to what extent it is executed.

Every individual in the EA represents a part of the program to be probed, and

7

4 — Evolutionary Algorithms Applications

it is encoded as two integers: the first one (called of fset) is the offset from the
beginning of the compiled code, in bytes; the second (called size) is the size of the
part, again in bytes (Figure 4.9)

Block to be tested | Replace block
(START, SIZE) and test Type |
EA \] —

N
Replace block
and test Type Il

Evaluator

|]

Fitness Value

Figure 4.9. Structure of the code integration approach.

The tool distinguishes between two types of areas of potential interest from an
attacker’s point of view: Type I areas represent blocks of code that almost always
skipped during a regular execution, like branches after a flow control instructions
that are rarely activated; Type II areas are usually not processed by the normal flow,
and often appear after the end of the main function of the program, like functions
that are infrequently called.

The rationale is to use a Type [area to inject a vehicle, overwriting the branch
with a call — as few as 22 bytes are sufficient to save all registry values, call the
malware code, and restore the original values. Then, store the actual malware into
one ore more Type Il areas. The tool does not need any hint, and it is is able to
autonomously discriminate between the two types of area observing the behavior of
the program after integration.

The EA generates individuals representing blocks, encoded as a vector of integers.
The first integer is the starting point of the block, the second is the size. During
evaluation, the original block indicated by the individual is overwritten with other
code, and the behavior of the program is tested. The evaluator also tries to distinguish
between areas of Type I and Type II, with different runs of the code.

4.3.4 Experimental Results

In order to attest their efficacy, the two proposed approaches are experimentally
tested. The code generation method is assessed on a real-world malware against
different commercial anti-virus software; while the evolutionary code integration is
run on two Windows executables.

The two main parameters controlling evolution in uGP are g and A. The former
is the size of the population: the number of active solutions in each step of the

78

4 — Evolutionary Algorithms Applications

optimization. The latter is the offspring size: the number of new solutions generated
in each generation. Almost all other parameters in uGP are self-adapted, that is,
the tool tweak the value internally and no user intervention is required.

Code Generation

For the experimental evaluation, the code of the virus Tumid is inserted into the
initial population. Timid is a relatively simple malware, a file infector virus that
does not become memory resident, firstly discovered in 1991 and rumored to be
an escaped research virus [72]. Each time a file infected with Timid is executed, it
copies its own code into other uninfected .COM files in the same directory; if there
are no more .COM uninfected files, a system hang occurs. Timid is chosen for the
experiment because of several desirable characteristics: despite its age, it still works
on the Windows XP operative system; its code is available in the public domain; and
its behavior is very predictable and controllable. Thus, checking if the modifications
of Timid created by the evolutionary framework still behave as the original malware
becomes a relatively straightforward process.

The A86 [58] assembly compiler is chosen for its efficiency in the compiling process.
A DOS script kills the individual’s process if it takes more than 5 s to complete,
thus preventing programs with infinite loops from blocking the evolution. A set of 5
.COM files, taken from those available in the directory DRIVE:\Windows\system32\,
are used as a test for the infection capability of an individual, their integrity being
checked with a md5 cryptographic hash function [84]. An ensemble of 4 different
freeware anti-virus applications is selected to verify the ability to escape detection.
The chosen anti-virus software shares some desired features: possibility of excluding
the database-driven malware detection, performing scans with the heuristic detection
only; configurable heuristics, ranging from permissive to distrustful; and a relatively
fast scan process. Excluding database-driven detection is a time-saving procedure,
since the new malware created by the framework is obviously not included in any
database, even if the original code is. The possibility of configuring the heuristics’
level of severeness is important to smoothen the fitness landscape, helping the EA to
direct the evolution toward the aim. Finally, a fast scan process makes it possible to
carry out experiments within a reasonable time limit.

Each experiment, run on a Notebook Intel Centrino running Windows XP Service
Pack 2, takes 10 to 15 minutes to complete. Starting from the same initial population,
containing only one individual modeling the original code of Timid, 100 runs of the
framework are executed. For each experiment, p = 10, A = 8. 96 runs out of 100
reach the maximum possible fitness value, thus producing individuals which compile
without errors, are executed correctly, behave like the original malware with regards
to several monitored .COM files in the same directory and are not detected by all 4
freeware anti-virus applications. 4 experiments out of 100 are stopped because they

79

4 — Evolutionary Algorithms Applications

produce individuals which delete or corrupt files needed to carry on the evolutionary
process.

The successful experiments terminated in an average of 6 generations, with a stan-
dard deviation of 2.5. It is worth noticing that the best individual in generation 1 is
already able to deceive the heuristics of two of the anti-virus applications; nevertheless,
the fitness of the best individual progresses steadily during the generations.

Code Integration

The code integrtion approach is testedon two target executables. Each experiment,
run on a Notebook Intel Centrino running Windows XP Service Pack 2, takes about
30 minutes to complete. For each experiment, ;1 = 100, A = 30. The first executable
chosen to test the evolutionary code injection approach is SPLIT.EXE?, a small
program (46,6 kB) able to split files of any kind into smaller parts or rebuild the
original. The EA is set to generate the parameter offset in the range (0, 43000), and
the parameter size in the interval (12, 1000) byte, factually covering all the original
code. The first search was stopped after about 10 generations, for a total of 300
individuals evaluated: it reveals 1 zone of Type I and 32 zones of Type II, ranging
from 65 to 1511 bytes, thus showing potentially vulnerable positions for an attack.

SPLIT.EXE
offset interval (0,43000)
Evaluations 300
Type I (zones found) 1
Type I (largest) 334
Type II (zones found) 32
Type II (largest) 1,511
TESTDISK.EXE
offset interval (0,43000) | (0,10000) | (0,2000)
Evaluations 15,000 2,000 300
Type I (zones found) - 1 1
Type I (largest) - 33 25
Type II (zones found) 3 4 3
Type II (largest) 179 167 183

Table 4.1: Summary of the experiments for code injections. While SPLIT.EXE shows
vulnerabilities even after a first run, several attempts are needed to find exploitable

areas in TESTDISK.EXE

3See http://www.iacosoft.com/home/split.txt

80

4 — Evolutionary Algorithms Applications

The second executable considered was TESTDISK.EXE! (315.2 kB), an open-source
data recovery software available for different platforms. TESTDISK proves to be more
resilient to attacks: a first run, with offset = (0, 43000) and size = (12, 1000) stopped
after about 500 generations and 15,000 individuals evaluated, only uncovers only
3 small zones of Type II, ranging from 12 to 179 byte. Since the zones appear to
be concentrated in the first part of the executable, subsequent attempts are made,
progressively restricting the interested area with offset=(0, 10000) and then offset =
(0, 2000). For these two settings, a zone of Type I if eventually detected. Thus, even
if more resilient to attacks, even TESTDISK.EXE shows exploitable weak points.

For a complete summary of the experiments, see Table 4.1.

4.4 An Evolutionary Approach for Test Program
Compaction

The increasing complexity of electronic components based on microprocessors and
their use in safety-critical application - like automotive devices - make reliability a
critical aspect. During the life cycle of such products, it is needed to periodically
check whether the processor cores are working correctly. In most cases, this task is
performed by running short, fast and specialized test programs that satisfies in-field
testing requirements. In this work is proposed a method that exploits an evolutionary-
computation technique for the automatic compaction of these in-field oriented test
programs. The aim of the proposed approach is twofold: reduce execution time
and memory occupation, while maintaining the fault coverage of the original test
program. Experimental results gathered on miniMIPS, a freely available 5-stage
pipelined processor core, demonstrate the effectiveness of the proposed technique.

4.4.1 Introduction

Manufacturers of microprocessor cores included in today embedded systems are not
only required to provide their final customers with cheaper, faster, more performant,
and less power consuming, but also more reliable devices. This statement is moti-
vated by the fact that microprocessor cores for embedded systems are included in
applications that, in these days, are considered safety critical, even if in few years
ago the situation was quite different. A paradigmatic case is automotive applications,
which are nowadays considered critical applications, since a faulty behavior may
provoke a traffic accident leading to several casualties.

4See http://www.cgsecurity.org/wiki/TestDisk

81

4 — Evolutionary Algorithms Applications

New standards, such as the ISO 26262 for automotive, and the DO-254 for
avionics, provide directions on how to perform periodic tests on microprocessor cores
involved in safety-critical applications, in order to increase the dependability of such
devices. Clearly, since the periodic testing procedures need to coexist with the actual
application, these standards specify constraints regarding execution time, memory
occupation, test frequency, and as well as regarding test coverage.

One of the most appropriate strategies for periodically testing processor cores
during its normal mode operation (i.e., to perform an in-field test) is based on
the use of carefully crafted programs. Processor testing through the test programs
execution is not a new strategy, in fact, its introduction dates back to 1980 [103],
and it is usually referred to as Software-Based Self-Test (SBST). A survey of the
most important SBST techniques can be found in [81].

In order to periodically run a SBST test program, the program should be allocated
in a memory accessible by the processor core; then, once the test is scheduled to be
executed, the processor stops the execution of the actual application, and then runs
the test program collecting, at the end the testing results. Interestingly, strategies
based on SBST do not require modifying the processor core, and are easily exploited
also during the normal mode operation of the processor core.

Several strategies have been proposed for developing test programs, as described
in [81]. These are based on different techniques that exploit manual, deterministic,
random, and also automatic strategies that usually aim at detecting the most of the
processor faults, neglecting however other constraints that deserve more attention
when considering in-field testing, such as the actual test program execution time and
code size.

In this work, we propose a new compaction procedure able to better fit in-field
constraints for processor cores in embedded systems by reducing the execution time as
well as the memory occupation of test programs. The main idea behind the proposed
strategy is based on the experimental evidence that in most of the test programs
there exist significant testing redundancy on the different instructions involved in
the test programs. We develop an evolutionary-based strategy able to discriminate
which of the instructions in the test program is not significantly contributing on
the testing goals, and then, it is possible to remove from the test program without
affecting the fault coverage but decreasing in this way the test program execution
time and the memory occupation.

In order to experimentally evaluate the proposed approach, we apply our strategy
to a set of test programs developed using different strategies and targeting a couple
of modules inside a freely available pipelined processor core, miniMIPS [1]. The
considered units are the decode unit, and the forwarding logic.

82

4 — Evolutionary Algorithms Applications

4.4.2 Background

Test of electronic components is a critical phase in order to guarantee the correct
behavior of each embedded component. Manufacturing test allows checking the
correct fabrication of a circuit: it is applied before beginning its operational mode
and permits the detection of faults prior distributing the component and putting it
on his final application. However, during the normal chip’s operational mode, there
is the possibility to come across operational faults; to improve reliability of embedded
systems and detect such faults, it is necessary to perform periodic tests during the
operational mode. Built-In Self-Test (BIST), as described in [6], is a very powerful
technique, able to achieve the twin goals of high fault and error coverage with low
error latency. Unfortunately, the BIST techniques require additional hardware to be
implemented and, consequently, give back an increase in costs, power consumption
and chip area. In addition, BIST techniques are not always suitable for in-field
testing.

Software-Based Self-Test (SBST) techniques are alternative BIST ones; SBST are
important low-cost test solutions that allow testing of electronic components without
hardware overhead, and without increasing the power consumption during the test
execution [48]; the efficacy of SBST depends on the quality of the test programs.

In [81], the most important strategies for generating test programs are described.
These techniques can be divided in two main groups: formal and simulation-based.
Through the formal approach, test programs are implemented using mathematical
techniques to prove some properties considering all possible inputs on the circuit.
Simulation-based techniques instead use a set of stimuli to discover any improper
behavior of the microprocessor that executes them.

For example, the VERTIS tool [3] is able to generate sequences of assembly
instructions for both functional design validation and manufacturing test. The
generated test program is based on the enumeration of all the possible combinations
for every instruction: this approach achieves good result in coverage of stuck-at
faults, but leads to very large test programs.

FRITS [76] is another generator that combines random generation of instruction
sequences with pseudorandom data. This tool is implemented through a cache-
resident approach; the program has to be loaded within the cache and, to work
correctly, it cannot produce any cache miss or bus cycle. FRITS has been implemented
on Intel’s Itanium processor family and Pentium 4 line of microprocessors achieving
70% stuck-at fault coverage for the entire chip.

Facing the problem of generating high-quality test programs through coverage-
driven approaches, exploiting simulation feedback, in [29] [27] authors implement
a system based on an evolutionary algorithm: the EA has been used to select
instructions defined within the processor’s ISA and data values, with the aim of
creating test programs with high fault coverage. Experimental results of these works

83

4 — Evolutionary Algorithms Applications

show the achievement of about the 86% of fault coverage on an 8051 microprocessor
and that this automatic technique can be successfully applied on complex pipelined
architecture such as SPARC v8.

Regarding on-line SBST, in [48], the author describes three precise goals that a
test program should pursue to be considered as a good one:

e Small memory footprint;
e Small execution time;

e Low power consumption.

An obvious disadvantage of tests applied during operational mode is the amount
of time subtracted to normal running applications and the memory space allocated
to contain the test program and its values.

Analyzing an existent test program in order to make it compliant with the
previously defined properties is a very difficult task, that has to be performed by
experts in a manually and tedious way. As described in [83], the reduction of the
test data volume is one of the most significant constraints to minimize the test
costs, because it means a reduction of test time and small memory requirements.
Consequently, compaction of a test program seems to be an affordable approach to
reduce the impact of the test routines on the running application programs.

In [87] authors describe a system based on Genetic Programming with the same
aim of reduce time execution and memory occupation of test programs presented on
this work, but focusing their approach on compacting test programs written in the
form of a loop.

4.4.3 Proposed Approach

Regardless the original generation methods, the most of the test programs contain
instructions that do not directly contribute to the program testing goal. For example,
in random based approaches as well as in deterministic ones , many redundant
instructions are placed in the program. Even though these instructions do not
provide any testing feature, these are not removed before the final delivery. Practical
evidence shows that in manual test, these instructions are also present, even though
the test engineer tries to reduce the number of irrelevant instructions written in the
program. As a matter of fact, in a final phase of the test program development, the
test engineer can try to reduce the test program size as well as the execution time
and memory occupation by identifying and eliminating the aforementioned irrelevant
instructions.

The proposed flow is depicted in Figure 4.10. Initially, during the Test program
collection phase, the Original processor Test Set should be sifted in order to only

84

4 — Evolutionary Algorithms Applications

select the test programs that mainly target the module under consideration. Then
a fault simulation is performed using the targeted fault list, which includes only
the module fault list and considers the selected fault model (e.g., stuck-at faults,
or transition delay faults). This phase delivers the Initial Set that is composed of
a limited number of test programs, and a detailed fault list that gathers all the
information regarding the initial fault coverage (FCi %) results.

Original
Test Set

A 4

Test program collection = = = | |nitial Set

v

User setup |& .
Config. |

v

Instruction
weighting
Instruction | Final
optimizer Set

Figure 4.10. Program compaction flow

During the second phase, the User setup one, the following parameters are defined
by the user:

e A Tolerance: This parameter defines the number of faults or the percentage of
FC that the user may tolerate to lose during the compaction process. In most
of the cases this value should be zero; however, in some cases it is affordable
to lose a few of faults on the final fault coverage in order to obtain a better
compaction. In particular, this parameter allows the optimization process to
generate test programs that may cover a slightly lower number of faults than
the original one;

85

4 — Evolutionary Algorithms Applications

o A Instructions: Minimum number of instructions to be eliminated, defined as
a percentage or number of instructions;

e Time limit (wall-clock time limit): This parameter defines the maximum time
available for performing the optimization process.

The third step consists on providing to every instruction in the test programs
with a weight that indicates the probability of one instruction to be eliminated from
the test program. For example, memory access related instructions (e.g., LS ST)
required to be weighted with a low value, since in most of the cases accesses to the
memory represent the most important instructions regarding observation. This step
allows the user to identify instructions and accordingly to its personal experience to
decide the actual possibilities to be removed from the test set.

The final step, called Instruction optimizer, consists in an optimization process
in charge of removing instructions from the current test program. In order to ease
this process, we associate each instruction of the program with a Boolean variable
that represent whether the instruction must be kept or not in the final test program.
Thus, every instruction is then described by using two values: the instruction weight,
and the instruction availability.

Once the test program is represented as a string of weights and availability, the
next step consists in the actual optimization process that will try to eliminate the
most of the instructions according to the instruction probabilities while maintaining
the expected FC% results.

We used an evolutionary optimizer called uGP (MicroGP). The tool was developed
at Politecnico di Torino in 2000, and is freely available under the GNU Public License
[88]. uGP represents individuals, in this case formed by a bitstring, as a directed
graphs, in which every element can be characterized by one or more tags. Tags are
useful both to identify elements, and to add semantic information useful to drive the
evolution; for example, in this case, the instruction weight is included as a tag in order
to determine the instruction probability to be removed or not. During the first step
of the evolution, a random population of individuals is created; afterwards, applying
the typical operators of mutation and recombination, individuals are optimized in
order to achieve the desired goal. Every new individual is evaluated resorting to
an external evaluator that returns the evolutionary optimizer the goodness of the
evaluated individual. Then, resorting to these values, individuals are ordered and
the best ones are maintained in the population, while the others are discharged from
the population. Then, a new evolutionary step starts again trying to improve the
remaining individuals in the population.

In [98] author presents a methodology based on uGP to devise assembly programs
suitable for a range of on-silicon activities, demonstrating the potentiality of this
approach performing experimental evaluation on two high-end Intel microprocessors.

86

4 — Evolutionary Algorithms Applications

The values suitable to determine goodness in the presented experiments are the
following:

e a) FC%: the generated individuals must target FCi% - A Tolerance

e b) Number of eliminated instructions: the minimum target is A Instruc-
tions

e ¢) 1 / execution time (uGP always maximizes the goodness)

The evolutionary optimizer can be configured in such a way to compact test
program according to one of the following goals:

e instructions number: the optimization is driven in order to reduce as much
as possible the number of instructions forming the best optimized program; this
strategy can be implemented by selecting the values a) and b) as the goodness
to be maximized;

e execution time: the optimization process faces the maximum reduction in
terms of execution time required by the test program; this goal may differ
respect to the one described in the previous point(e.g., when original test
programs contains loops); in this case an appropriate goodness consists in the
values a) and c).

The strategy selected to compact programs in this work was to optimize the
instruction number. During the experiments, we inserted within the random popula-
tion an individual with all bits set to 1; it means a configuration selecting the whole
instructions in the test program. Thus, it was possible to start the evolution process
with one candidate solution already yielding the goal desired.

4.4.4 Case Study and Experimental Results

The feasibility of the proposed approach and its compaction capacity was verified
applying the strategy described in the previous sections to compact test programs, in
which the effort is concentrated on testing two interesting modules of the miniMIPS
[1] processor: the forwarding and interlock unit, and the decode unit.

The miniMIPS architecture is based on 32-bit buses and includes a 5H-stage
pipeline. The RT-level description was synthesized with Synopsys Design Compiler
version H-2013.03-SP5-4 targeting an in-house developed library. The resulting
gate-level netlist contained 16,303 gates and 1,967 flip-flops, corresponding to 115,508
stuck-at faults.

The framework implemented to allow the use of uGP was configured as follow:
the EA tool creates an individual constituted by a vector of boolean mask with as

87

4 — Evolutionary Algorithms Applications

many elements as the number of instructions constituting the original test program.
Then, a new program is created including the instructions represented as true. The
program obtained by this operation consists on a subset of instructions of the original
one, which is ready to be simulated and fault simulated by targeting the faults of
the module under consideration.

The fitness values required by the evolutionary optimizer are calculated resorting
to a logic simulator and a fault simulator. The logic simulation was performed
resorting to ModelSim SE version 6.6d; whereas the fault simulations, determining
the FC% achieved by every test program, were performed using TetraMAX version
H-2013.03-SP1. The number of faults covered by an individual may increase due to
the particular architecture of the modules under test. This particular eventuality
is not considered as an improvement, thus, the number of faults covered does not
include the faults that overtake the fault coverage of original test program.

For every one of the processor modules we targeted in this work, three different
set of test programs were gathered. These test set were obtained through three
different generation approaches:

e genetic programming (GP)
e manual optimization (M)

e random (RND)

Considering that instructions performing memory access are the most important
ones to observe values on buses permitting to check the correctness of signals in
transit, we set parameters in such a way to impose a low probability to eliminate
them. In particular, we set the probability to remove LS and ST instructions to 0.25;
removal probability for the rest of instructions was set to 0.75.

Experiments described in this work were executed on a workstation based on 2
Intel Xeon E5450 CPUs running at 3.00 GHz, equipped with 8 GB of RAM. On this
machine, the duration of a complete simulation in terms of wall-clock time is between
6 and 12 seconds for each run, mostly dedicated to fault simulation; to speed-up
the process, experiments were parallelized on all the 8 available cores. As usually
happens in industrial applications, the real time limit is defined by the wall-clock;
according to this constraint, we set the time limit parameter for each compaction
process to 10 hours.

Forwarding and Interlock Unit

The forwarding and interlock unit is a hardware solution to deal with data hazards;
the methods employed to avoid data hazards mainly consist in checking if there

88

4 — Evolutionary Algorithms Applications

is a data dependency between two instructions simultaneously present in different
pipeline stages, and take suitable counteractions accordingly; example:

(1) ADD R1, R2, R3 (2) ADD R4, R1, R5

For clarity purposes, let us consider the example above where we call the first
instruction entering the pipeline instruction (1) and the instruction arriving later,
which has a data dependency with the first one, instruction (2). In this case
forwarding must be activated: the input data for instruction (2), instead of coming
from the register file, is directly taken from the stage where instruction (1) produces
it. In case instruction (1) is not yet in that stage, interlock is used. Interlock implies
the pipeline is stalled until instruction 1 reaches the stage in which the data is
produced. At that moment, forwarding is used to send the result of instruction (1)
to the stage where instruction (2) needs its operands.

The forwarding and interlock unit inside the miniMIPS processor is a unit used
within the execution stage, consisting in a combinatorial block of 551 gates, counting
3,738 stuck-at faults.

The test programs used as benchmark for this unit are characterized by sim-
ilar fault coverage values, but a different number of instructions due to different
approaches used for producing them: the GP program, generated through genetic
programming, covers 3,237 faults (86.6 %) counting with 456 instructions, and re-
quiring 568 clock cycles to execute the test program. The M program, obtained by
an expert test engineer through manual optimization, covers 3,240 faults (86.7%)
using 243 instructions; to be executed, this test programs needs 382 clock cycles.
And finally, we created a third test set using a random approach that produces the
RND test program that counts with 2,000 instructions, covers 2,861 faults (76.5%);
due the greater number of instructions within it, the running time is 2,325 clock
cycles.

Table 4.2 presents the results obtained by applying the compaction approach
(EC Compactions) described in the previous sections, targeting the test programs for
testing the forwarding unit module. For this first experiment, we set a A Tolerance
equal to zero, with the aim of compacting test program without losing any faults
excited by the original version; A Instructions parameter instead was set equal to
10%. The value of minimum number of instructions to be eliminated was chosen not
too strict, due that compaction possibilities of a test program are not known at the
beginning of optimization. For the sake of comparison, we implement also a random
approach that eliminates instructions in a random fashion, and the results on these
experiments are also shown the Table 1 lines labeled as Random Compaction.

The reader may notice while observing Table 4.2, that the evolutionary-computation
technique has a high capacity of compaction, and improves the quality of the test
programs reducing number of instructions and the needed time to execute them,
without affecting the final fault coverage.

89

4 — Evolutionary Algorithms Applications

GP Program

M Program

RND Program

Fault
Coverage %

Original
TP

86.6

86.7

76.5

EC

Compaction
Random
Compaction
Original
TP
EC
Compaction
Random
Compaction
Original
TP
EC
Compaction
Random
Compaction

456 243 2000

Size
[instructions]

-16.0% -46.1% -26.1%

-0.4% -5.4% -0.8%

269 382 2324

Duration
[cc]

-13.7% -38.5% -26.4%

-0.5% -3.7% -0.7%

Table 4.2: Compaction of test programs for the forwarding unit

Interestingly, the random approach shows low compaction capacities, due also
to the strong constraints to conserve the same faults coverage of the original test
programs; this obligation makes valid only a small part of programs obtained by
casual compaction, despite the creation of the same number of programs generated
during the evolutionary compaction approach.

Figure 4.11 shows program size and program duration evolution for all the three
experiments related to the forwarding unit. Even though our primary goal is to
minimize the program size, as a side-effect a similar trend is obtained also for program
duration in all the three cases.

Decode Unit

The decode unit is a module present in microprocessor that interprets the instruction
codes and figure out what are operations to be applied to data; it is a module working
within the decode stage and, on the implementation used of the miniMIPS processor,
it counts 7,502 stuck-at faults that refer to 977 gates and 203 flip-flops.

Similarly to the approach described in the previous section for the forwarding
unit, benchmark test programs implemented for testing the decoding hardware are
similar by faults coverage. Test programs adopted in this work are: program GP,

90

4 — Evolutionary Algorithms Applications

obtained through genetic programming, that covers 5,971 faults (79.6%) with 447
instructions and 1,231 clock cycles of execution time; program M, handwritten by
experts, that covers 5,792 faults (77.2%) using 258 instructions and 2,328 clock cycles
of running period, and a random one formed by 2000 instructions covering 5,699
faults (76%), called program RND, that needs 2,325 clock cycles for executing it.

100,00% e

90,00% \
80,00% -

o 70,00%
3 60,00%
E 50,00%
& 40,00%
& 30,00%
20,00%
10,00%
0,00%
0 1000 2000 3000 4000 5000 6000 7000 8000 9000
Evaluated programs
=GP Program =M Program RND Program
100,00% -

90,00%

80,00% \

70,00% __
60,00%

50,00%

40,00%

30,00%

20,00%

10,00%

0,00%

0 1000 2000 3000 4000 5000 6000 7000 8000 9000
Evaluated programs

Program duration

=GP Program =M Program RND Program

Figure 4.11. Forwarding and interlock unit program size and duration evolution

The application of compaction techniques to the decode module was a quite
hard task. Application of random and evolutionary compaction techniques it has
proved an unsuccessful process: with both approaches it was not possible to compact
programs without losing in number of covered faults. To obtain significant results,
it was enough to insert a tolerance in total number of faults; the A Tolerance
parameter was set to 1%, in order to admit a small leak in coverage and permitting
a satisfying reduction in number of instructions. Thus, similarly to what we did
in the previous experiments for the forwarding unit program compaction, the A
Instructions parameter was set to 10%. Table 4.3 shows compaction achieved with
this new constraint.

91

4 — Evolutionary Algorithms Applications

GP Program | M Program | RND Program
Original
Fault TP 79.6 77.2 76.0
Coverage % EC . 0.8 -0.7 -0.4
Compaction
Randon'a 06 0.7 08
Compaction
Original
Size TP 447 258 2000
[instructions] EC ' 97 3% ~70.9% _52.0%
Compaction
Random -1.8% -24.0% -28.4%
Compaction
Original
Duration TP 1231 2328 2325
[cc] EC 11.4% -37.1% 51.0%
Compaction
Random 11% 71.8% -27.8%
Compaction

Table 4.3: Compaction of test programs for the decode unit, with 1% of faults lost

Values in Table 4.3 confirms the method suitability; moreover, due to the in-
troduction of the A Tolerance parameter, the size compaction results are slightly
better than the ones obtained previously. The Evolutionary-Computation based
compaction algorithm works better than a random compaction and was able to
reduce test programs length up to 70% in the case of handwritten program.

Figure 4.12 depicts the evolution of the program size and duration concerning
the decode unit experiments. The reader can observe a sharp improvements for the
RND program; this is a typical trend of evolutionary optimizers, which represents
an escape from local maximum values.

92

4 — Evolutionary Algorithms Applications

Popoillh
90,00%
80,00% A
g 7000% \\
@ 60,00%
€ so00% \\
§ 40,00%
& 3000% L —
20,00%
10,00%
0,00%
0 1000 2000 3000 4000 5000 6000 7000 8000 9000
Evaluated programs
e GP Program ====M Program =—RND Program
100,00%
90,00%
80,00%
.g 70,00%
.a 60,00%
£ 50,00%
8 40,00%
? 30,00%
20,00%
10,00%
0,00%
0 1000 2000 3000 4000 5000 6000 7000 8000 9000
Evaluated programs
~——GP Program ———RND Program =M Program

Figure 4.12. Decode unit program size and duration evolution

93

Chapter 5

Conclusions

The goal of this thesis is to design and implement new EA technologies for improving
the uGP tool in its industrial-grade optimization capabilities. In more details, this
thesis show new approaches for the selection of optimal genetic operators during
different phases of the evolution; the definition of a new metric for calculating
distance between individuals and able to guarantee the diversity preservation within
the population; and a new evolutionary approach that use a cooperative evolution
to group individuals in order to optimize a set of sub-optimal solutions. Then, the
thesis reports four different successful industrial scenarios: generation of on-line
test programs; compaction of on-line test programs; design of wetlands. Finally, a
prototypical application is shown: automatic creation of malware.

The extensive experimental evaluation demonstrates that the proposed approach
to a cooperative evolution for the generation of functional test programs is effective
in achieving a high fault coverage on the targeted modules, while maintaining
essential characteristics for on-line testing. The approach consists in an automatic
strategy for the generation of functional test programs oriented to on-line testing of
processor cores. The proposed strategy requires low human intervention, as well as
low knowledge about the processor core or the modules under test.

In the experiments on group evolution, two common modules available in a
pipelined processor core were tackled: the address calculation module and the
forwarding unit. Both of the modules were approached using the proposed strategy,
and the final coverage results experimentally corroborate the suitability of the
proposed approach.

Experiments on the distance for Linear Genetic Programming show a prominent
correlation between the proposed method and phenotypic problem-specific distance
measurements in two samples where individuals are radically different, NK-landscapes
and Assembly language generation. The methodology is then successfully applied
to two experiments with fitness sharing, showing again results comparable to more
complex and computationally more demanding phenotypic fitness metrics. Following

94

5 — Conclusions

the same general principles, a similar distance metric could also be defined for
classical Genetic Programming, using for example a node and its children in place of
n-grams. However, further studies are needed to assess the general validity of the
proposed approach. Variations of the methodology need to be conceived in order
to tackle individuals composed of both real values and constants, or individuals in
combinatorial problems. Also, since the proposed approach relies upon the number of
symbols encoded in each individual, its use for diversity preservation might implicitly
benefit larger individuals, thus possibly contributing to the known issue of bloating.

Experiments performed for the extension of the Dynamic Multi-Armed Bandit
approach, for the genetic operators selection, shows that was possible to combine
the performance benefits of the standard DMAB strategy, with the added benefit
of simplifying its usage, removing the need to select operators beforehand, and
relaxing the constraints on operator definitions, as operators can fail sporadically.
Our simulation and experimental results on two benchmarks demonstrate that the
extension indeed yields in all setups a performance at least equal to the DMAB
approach for specific problems and clearly better in other cases.

Moreover, applications discussed in Chapter 4 clearly show the adaptability of
evolutionary algorithms in different optimization contexts, due to the significant
differences between the fields of application.

In the application on wetlands optimization, results achieved using evolution-
ary algorithm as optimizer are encouraging. Optimizing the wetland design is an
extremely complex task, and it is currently carried on by experts using a trial-and-
error approach on the basis of fluid-dynamics simulations. In this application, an
evolutionary algorithm is applied to the wetlands design problem. Each candidate
solution is evaluated by a state-of-the-art fluid-dynamics simulator, on the basis of
several relevant metrics. Th application of evolutionary algorithm based optimization
show a performance comparable with human-devised designs, despite the absence of
human intervention during the optimization process.

Slightly different is the application of EAs in anti-malware research. While the
research is still at an early stage of development, its potential is apparent. An
evolutionary toolkit was used first to devise a new malware, modifying and tweaking
existing code to escape detection, then to find holes in an existing executable to
hide malicious code in. Future works will focus on the development of an automated
procedure to model malware code in the internal representation of the EA; on the
use of even more commercial anti-virus programs to improve the final applications
produced by the framework; and on the development of general heuristics able to
determine whether the programs produced by the framework still retain the malicious
characteristics of the original software source, even when more distinct malware
applications are present in the first population. Finally, the two approaches will be
merged in a single one, able to automatically create new code injectors.

95

5 — Conclusions

The last application described in Chapter 4, instead, presents a new automatic
approach to perform test program compaction. Applying compaction technique
based on an evolutionary algorithm, it is possible to decrease execution time and
memory requirements of existing test programs without losing in fault coverage.

Results presented on this work show the efficacy of the approach, underlining
the concept that it is possible to compact test programs generated through different
techniques: genetic programming, manual and random. In addition, the approach
based on EA is compared with a fully random one, showing higher compaction
performance, confirming that our proposed method is more effective than a purely
random one.

Observing obtained results, compared with those obtained by previous versions
of uGP , the potential of new technologies is encouraging. Starting from this point,
I intend to focus my future research activities belonging the following directions:
Group Evolution: this technology, presented in this thesis, is still under development.
Many inspections on the potential of the genetic operators are still required; Aging:
The idea is to apply some theories of aging of humans in the evolutionary algorithms
field, by allowing crossovers among young individuals and mutations on older ones;
in this way could be possible to force exploration and exploitation phases on each
individual.

96

Appendix A

Acronyms

ALU: Arithmetic and Logic Unit

BIST: Built-In Self-Test

CAD: Computer-Aided Design

CCEA: Cooperative Co-Evolutions Algorithms
CISC': Complex Instruction Set Computer
CPU: Central Processing Unit

DAME: Dark Angel’s Multiple Encryptor
DIS': Draft International Standard

DMAB: Dynamic Multi-Armed Bandit

DOS: Disk Operating System

FEA: Evolutionary Algorithms

EC': Evolutionary Computation

EP: Evolutionary Programming

ES: Evolutionary Strategies

FC': Faults Coverage

FRITS: Functional Random Instruction Testing at Speed

G A: Genetic Algorithms

97

A — Acronyms

GNU: GNU’s Not Unix

GP: Genetic Programming

IS A: Instruction Set Architecture

ISO: International Organization for Standardization
IT: Information Technology

LGP: Linear Genetic Programming

LRU: Least Recentlty Used

MA B: Multi-Armed Bandit

MIMD: Multiple Instruction Multiple Data
MtE: The Mutation Engine

NSGA: Nondominated Sorting Genetic Algorithm
NP: Nondeterministic Polynomial time

OS': Operating System

PDMAB: Parallelized Dynamic Multi-Armed Bandit
PE: Portable Executable

RAM: Random Access Memory

RISC': Reduced Instruction Set Computer
ROM: Read Only Memory

RTL: Register Transfer Level

SBST: Software-Based Self-Test

SPARC:": Scalable Processor ARChitecture

TGP: Tree-based Genetic Programming

TPE: TridenT Polymorphic Engine

UCB: Upper Confidence Bound

UID: Universal Information Distance

98

A — Acronyms

VCD: Value Change Dump
VCL: Virus Creation Laboratory

XML: eXtensible Markup Language

99

Appendix B

List of Publications

e M. Gaudesi, M. Jenihhin, J. Raik, E. Sanchez, G. Squillero, V. Tihhomirov,
R. Ubar Diagnostic Test Generation for Statistical Bug Localization using
FEvolutionary Computation. In: EVOSTAR - The Leading European event on
Bio-Inspired Computation, Granada, Spain, 23-25 April 2014.

e Di Carlo S., Gaudesi M., Sanchez E., Sonza Reorda M. (2014) A Functional
Approach for Testing the Reorder Buffer Memory. In: JOURNAL OF ELEC-
TRONIC TESTING, vol. 30 n. 4, pp. 469-481. - ISSN 0923-8174

e M. Gaudesi, S. Saleem, E. Sanchez, M. Sonza Reorda, E. Tanowe (2014) On
the In-Field Test of Branch Prediction Units using the Correlated Predictor
mechanism. In: IEEE 17th International Symposium on Design and Diagnostics
of Electronic Circuits and Systems, Warsaw, Poland, April 23-25.

e Gaudesi M., Piccolo E., Squillero G., Tonda A. (2014) TURAN: Evolving
non-deterministic players for the iterated prisoner’s dilemma. In: 2014 IEEE
Congress on Evolutionary Computation (CEC), Beijing, China, 06 - 11 July,
2014. pp. 21-27

e Cani A., Gaudesi M., Sanchez E., Squillero G., Tonda A. (2014) Towards
Automated Malware Creation: Code Generation and Code Integration. In: 29th
Symposium on Applied Computing - SAC 14, Gyeongju, Korea, March 24 - 28,
2014. pp. 157-158

e Marco Gaudesi, Giovanni Squillero, Alberto Tonda (2014) Universal infor-
mation distance for genetic programming. In: GECCO 14 - Genetic and
Evolutionary Computation Conference, Vancouver, BC, Canada, July 12-16,
2014. pp. 137-138

100

B — List of Publications

e Gaudesi M., Squillero G., Tonda A. (2013) An Efficient Distance Metric for
Linear Genetic Programming. In: GECCO 2013 - Genetic and Evolutionary
Computation Conference, Amsterdam, The Netherlands, July 06-10, 2013. pp.
925-932

e Gaudesi M., Marion A., Musner T., Squillero G., Tonda A. (2013) An FEwvo-
lutionary Approach to Wetlands Design. In: 11th European Conference on
Evolutionary Computation, Machine Learning and Data Mining in Bioinfor-
matics, EvoBIO 2013, Vienna (Austria), 3-5 April 2013. pp. 177-187

e M. Gaudesi, A. Marion, T. Musner, G. Squillero, A. Tonda (2013) Evolutionary
Optimization of Wetlands Design. In: 28th Annual ACM Symposium on
Applied Computing, SAC 2013, Coimbra, Portugal, 18 - 22 Marzo 2013. pp.
176-181

e Ciganda L., Gaudesi M., Lutton E., Sanchez E., Squillero G., Tonda A. (2012)
Automatic Generation of On-Line Test Programs through a Cooperation Scheme.
In: 13th International Workshop on Microprocessor Test and Verification
(MTV), 2012, Austin TX, USA, 10-13 Dec. 2012 . pp. 13-18

Definitely Accepted — Currently in Press

e R. Cantoro, M. Gaudesi, E. Sanchez, P. Schiavone, G. Squillero An Evolutionary
Approach for Test Program Compaction. In: Latin American Test Symposium
(LATS), 2015.

e N. Palermo, V. Tihhomirov, T. S. Copetti, M. Jenihhin, J. Raik, S. Kostin, M.
Gaudesi, G. Squillero, M. Sonza Reorda, F. Vargas Rejuvenation of Nanoscale
Logic at NBTI-Critical Paths Using Evolutionary TPG. In: Latin American
Test Symposium (LATS), 2015.

Awaiting Final Decision

e M. Gaudesi, E. Piccolo, G. Squillero, A. Tonda Ezploiting Evolutionary Mod-
eling to Prevail in Iterated Prisoner’s Dilemma Tournaments. In: Transac-
tions on Computational Intelligence and Al in Games, 2015 (minor review,
re-submitted).

e J. Belluz, M. Gaudesi, G. Squillero, A. Tonda Operator Selection using Improved
Dynamic Multi-Armed Bandit. In: GECCO 2015 - Genetic and Evolutionary
Computation Conference, Madrid, Spain, July 11-15, 2015).

101

B — List of Publications

e R. Cantoro, M. Gaudesi, E. Sanchez, G. Squillero Fxploiting Evolutionary
Computation in an Industrial Flow for the Development of Code-Optimized
Microprocessor Test Programs. In: GECCO 2015 - Genetic and Evolutionary
Computation Conference, Madrid, Spain, July 11-15, 2015).

e M. Gaudesi, M. Sonza Reorda, I. Pomeranz On Test Program Compaction. In:
ETS 15 - 20th IEEE European Test Symposium, Cluj-Napoca, Romania, May
25-29. 2015.

102

Bibliography

1]
2]

3]

[4]

[13]

miniMIPS processor, available at http://opencores.org/project,minimips.
Symmetric Difference, in: E. J. Borowski, J. M. Borwein (eds.), The Harper-
Collins Dictionary of Mathematics, HarperCollins, 1991.

Native mode functional test generation for processors with applications to self
test and design validation (Oct. 1998).

M. Ahluwalia, L. Bull, Co-evolving Functions in Genetic Programming: Dy-
namic ADF Creation using GLiB, in: V. W. Porto, N. Saravanan, D. Waagen,
A. E. Eiben (eds.), Evolutionary Programming VII: Proceedings of the Sev-
enth Annual Conference on Evolutionary Programming, vol. 1447 of LNCS,
Springer-Verlag, Mission Valley Marriott, San Diego, California, USA, 1998,
pp. 809-818.

C. Akratos, V. Tsihrintzis, Effect of temperature, HRT, vegetation and porous
media on removal efficiency of pilot-scale horizontal subsurface flow constructed
wetlands, Ecological Engineering 29 (2) (2007) 173-191.

H. Al-Asaad, B. T. Murray, J. P. Hayes, Online BIST for Embedded Systems,
Journal IEEE Design & Test vol. 15 (4) (1998) 17-24.

F. Arega, B. F. Sanders, Dispersion Model for Tidal Wetlands, Journal of
Hydraulic Engineering 130 (8) (2004) 739-754.

P. Auer, N. Cesa-Bianchi, P. Fischer, Finite-time analysis of the multiarmed
bandit problem, Machine learning 47 (2) (2002) 235-256.

D. Augustijn, F. Huthoff, E. Velzen, Comparison of vegetation roughness
descriptions.

J. Bagley, The behavior of adaptive systems which employ genetic and correla-
tion algorithms, Ph.D. thesis, University of Michigan (1967).

W. Banzhaf, P. Nordin, R. E. Keller, F. D. Francone, Genetic Programming;:
An Introduction: On the Automatic Evolution of Computer Programs and Its
Applications (The Morgan Kaufmann Series in Artificial Intelligence).

J. Bauer, J. Michel, Y. Wu, ITU Study on the Financial Aspects of Network
Security: Malware and Spam, ICT Applications and Cybersecurity Division,
International Telecommunication Union, Final Report.

G. Bendoricchio, S. E. Jorgensen (eds.), Fundamentals of Ecological Modelling,

103

Bibliography

Third Edition, 3rd ed., Elsevier Science, 2001.

[14] P. Bernardi, L. Ciganda, M. D. Carvalho, M. Grosso, J. Lagos-Benites,
E. Sanchez, M. S. Reorda, O. Ballan, On-Line Software-Based Self-Test of the
Address Calculation Unit in RISC Processors, in: European Test Symposium
(ETS), 2012 17th IEEE, 2012, pp. 1-6.

[15] P. Bernardi, M. Grosso, E. Sanchez, O. Ballan, Fault grading of software-
based self-test procedures for dependable automotive applications, in: Design,
Automation & Test in Europe Conference & Exhibition (DATE), 2011, IEEE,
2011, pp. 1-2.

[16] G. E. P. Box, Evolutionary operation: A method for increasing industrial
prouctivity, Applied Statistics VI, no. 2 (1957) 81-101.

[17] T. Bradley, Zero Day Exploits: Holy Grail Of The Malicious Hacker,
http:/ /netsecurity.about.com/od /newsandeditoriall /a/aazeroday.htm.

[18] W. S. Brainerd, L. H. Landweber, Theory of Computation, John Wiley & Sons,
Inc., New York, NY, USA, 1974.

[19] M. F. Brameier, W. Banzhaf, Linear genetic programming, Springer, 2007.

[20] H. J. Bremermann, Optimization through Evolution and Recombination, Spar-
tan Books, 1962.

[21] A. Cani, M. Gaudesi, E. Sanchez, G. Squillero, A. Tonda, Towards Automated
Malware Creation: Code Generation and Code Integration, in: Proceedings of
the 29th Annual ACM Symposium on Applied Computing, SAC 14, ACM,
New York, NY, USA, 2014, pp. 157-160.

[22] W. D. Cannon, The Wisdom of the body, W.W.Norton, 1932.

[23] R. Cantoro, M. Gaudesi, E. Sanchez, P. Schiavone, G. Squillero, An Evolution-
ary Approach for Test Program Compaction, in: (in press), 2015.

[24] T. M. Chen, J. Robert, The Evolution of Viruses and Worms, in: Statistical
Methods in Computer Science, 2004.

[25] L. Ciganda, M. Gaudesi, E. Lutton, E. Sanchez, G. Squillero, A. Tonda, Auto-
matic Generation of On-Line Test Programs through a Cooperation Scheme, in:
13th International Workshop on Microprocessor Test and Verification (MTV),
2012, pp. 13-18.

[26] F. Cohen, Computer viruses : Theory and experiments, Computers & Security
6 (1) (1987) 22-35.

[27] F. Corno, E. Sanchez, M. S. Reorda, G. Squillero, Automatic Test Program
Generation: A Case Study., IEEE Design & Test of Computers 21 (2) (2004)
102-109.

[28] F. Corno, E. Sénchez, G. Squillero, Evolving assembly programs: how games
help microprocessor validation, Evolutionary Computation, IEEE Transactions
on 9 (6) (2005) 695-706.

[29] F. Corno, M. Sonza Reorda, G. Squillero, M. Violante, On the test of micro-
processor IP cores, in: Proceedings of Design, Automation and Test in Europe

104

Bibliography

[35]

[36]
[37]
[38]

[39]

Conference and Exhibition 2001, IEEE Press, Munich, Germany, 2001, pp.
209-213.

G. Corriveau, R. Guilbault, A. Tahan, R. Sabourin, Review and Study of Geno-
typic Diversity Measures for Real-Coded Representations, IEEE transactions
on evolutionary computation 16 (5) (2012) 695-710.

L. M. Cowardin, Classification of Wetlands and Deepwater Habitats of the
United States, DIANE Publishing, 1979.

L. DaCosta, A. Fialho, M. Schoenauer, M. Sebag, Adaptive Operator selection
with dynamic multi-armed bandits, in: G. Rudolph, T. Jansen, S. M. Lucas,
C. Poloni, N. Beume (eds.), PPSN, vol. 5199 of Lecture Notes in Computer
Science, Springer, 2008.

R. Dawkins, The Selfish Gene, Oxford University Press, 1982.

K. Deb, D. E. Goldberg, An investigation of niche and species formation
in genetic function optimization, in: Proceedings of the 3rd International
Conference on Genetic Algorithms, Morgan Kaufmann Publishers Inc., 1989,
pp- 42-50.

K. Deb, A. Pratap, S. Agarwal, T. Meyarivan, A fast and elitist multiobjective
genetic algorithm: NSGA-II, Evolutionary Computation, IEEE Transactions
on 6 (2) (2002) 182-197.

J. Doe, J. Roe, J. Bloggs, Evolutionary Optimization of Wetlands Design, in:
28th Symposium On Applied Computing (SAC), 2013.

A. E. Eiben, J. E. Smith, Introduction to evolutionary computing, vol. 2,
Springer Berlin, 2010.

J. Elder, The dispersion of marked fluid in turbulent shear flow, J. Fluid Mech
5 (4) (1959) 544-560.

A. Fialho, L. D. Costa, M. Schoenauer, M. Sebag, Analyzing bandit-based
adaptive operator selection mechanisms., Ann. Math. Artif. Intell. 60 (1-2)
(2010) 25-64.

H. Fischer, Mixing in inland and coastal waters, Academic Pr, 1979.

L. J. Fogel, Autonomous Automata, Industrial Research 4 (1962) 14-19.

L. J. Fogel, Toward Inductive Inference Automata, in: Proceeding of the
International Federation for Information Processing Congress, 1962, pp. 395—
400.

A. S. Frazer, Simulation of genetic systems by automatic digital computers
(part 1), Australian Journal of Biological Science 10 (1957) 484-491.

R. M. Friedberg, A learning machine: Part I, IBM Journal of Research and
Development 2 (1) (1958) 2-13.

J. C. Galland, N. Goutal, J. M. Hervouet, TELEMAC: A new numerical model
for solving shallow water equations, Advances in Water Resources AWREDI,

14 (3).

105

Bibliography

[46] M. Gaudesi, A. Marion, T. Musner, G. Squillero, A. P. Tonda, An Evolutionary
Approach to Wetlands Design., in: L. Vanneschi, W. S. Bush, M. Giacobini
(eds.), EvoBIO, vol. 7833 of Lecture Notes in Computer Science, Springer, 2013,
pp. 177-187.

[47] M. Gaudesi, G. Squillero, A. P. Tonda, An efficient distance metric for linear
genetic programming., in: C. Blum, E. Alba (eds.), GECCO, ACM, 2013, pp.
925-932.

[48] D. Gizopoulos, Low-cost, on-line self-testing of processor cores based on em-
bedded software routines, Microelectronics Journal vol. 35 (5) (2004) 443-449.

[49] D. Goldberg, Genetic algorithms in search, optimization, and machine learning,.

[50] J. Green, J. Garton, Vegetation lined channel design procedures, Transactions
of the American Society of Agricultural Engineers 26 (2) (1983) 437-439.

[51] R. Hamming, Error detecting and error correcting codes, Bell System technical
journal 29 (2) (1950) 147-160.

[52] J. M. Hervouet, J. L. Hubert, J. M. Janin, F. Lepeintre, E. Peltier, The
computation of free surface flows with TELEMAC: an example of evolution
towards hydroinformatics, Journal of Hydraulic Research 32 (S1) (1994) 45-64.

[53] D. V. Hinkley, Inference about the change-point from cumulative sum tests,
Biometrika 58 (3) (1971) 509-523.

[54] J. H. Holland, Adaptation in Natural and Artificial Systems, University of
Michigan Press, 1975.

[55] J. H. Holland, Adaptation in natural and artificial systems, MIT Press, Cam-
bridge, MA, USA, 1992.

[56] P. Husbands, F. Mill, Simulated Co-Evolution as the Mechanism for Emergent
Planning and Scheduling., in: R. K. Belew, L. B. Booker (eds.), ICGA, Morgan
Kaufmann, 1991, pp. 264-270.

[57] D. Iliopoulos, C. Adami, P. Szor, Darwin inside the machines: Malware
evolution and the consequences for computer security, in: Proceedings of Virus
Bulletin Conference, 2008, pp. 187-194.

8] E. Isaacson, A86/A386 assembler, http://www.eji.com/a86/ (2006).

9] ISO/DIS26262, Road vehicles - functional safety (2009).

0] R. Kadlec, The inadequacy of first-order treatment wetland models, Ecological
Engineering 15 (1-2) (2000) 105-119.

[61] R. Kadlec, S. Wallace, Treatment wetlands, CRC, 20009.

[62] S. Kauffman, E. Weinberger, The NK model of rugged fitness landscapes and
its application to maturation of the immune response, Journal of theoretical
biology 141 (2) (1989) 211-245.

[63] J. R. Koza, Genetic Programming, On the Programming of Computers by
Means of Natural Selection. A Bradford Book, MIT Press, Cambridge, MA,
USA, 1992.

106

Bibliography

[64] T. Lai, H. Robbins, Asymptotically Efficient Adaptive Allocation Rules, Ad-
vances in Applied Mathematics 6 (1985) 4-22.

[65] V. 1. Levenshtein, Binary codes capable of correcting deletions, insertions and
reversals, in: Soviet physics doklady, vol. 10, 1966, p. 707.

[66] M. A. Ludwig, The giant black book of computer viruses, American Eagle
Publications, 1998.

[67] C. J. Martinez, W. R. Wise, Analysis of constructed treatment wetland hy-
draulics with the transient storage model OTIS, Ecological Engineering 20 (3)
(2003) 211-222.

[68] J. Maturana, A. Fialho, F. Saubion, M. Schoenauer, M. Sebag, Extreme
compass and Dynamic Multi-Armed Bandits for Adaptive Operator Selection.,
in: IEEE Congress on Evolutionary Computation, IEEE, 2009, pp. 365-372.

[69] J. Maturana, F. Saubion, A Compass to Guide Genetic Algorithms, in:
G. Rudolph, T. Jansen, S. M. Lucas, C. Poloni, N. Beume (eds.), PPSN;,
vol. 5199 of Lecture Notes in Computer Science, Springer, 2008, pp. 256—265.

[70] M. Mauldin, Maintaining diversity in genetic search, in: Proceedings of the
national conference on artificial intelligence (AAAI conference on artificial
intelligence), vol. 247, 1984, p. 250.

[71] E. W. Mayr, Toward a new Philosophy of Biological Thought: Diversity,
Evolution and Inheritance, Belknap, Harvard, 1982.

[72] McAfee, Threat Center: TIMID entry, http://vil.nai.com/vil/content/v_-
1240.htm (1991).

[73] A. Merentitis, et al., Directed Random SBST Generation for On-Line Testing
of Pipelined Processors, in: On-Line Testing Symposium, 2008. IOLTS ’08.
14th IEEE International, IEEE, 2008, pp. 273-279.

[74] R. Moir, Defining Malware: FAQ, http://technet.microsoft.com/en-
us/library /dd632948.aspx (October 2003).

[75] S. Noreen, S. Murtaza, M. Z. Shafiq, M. Farooq, Evolvable malware, in:
Proceedings of the 11th Annual conference on Genetic and evolutionary com-
putation, GECCO ’09, ACM, New York, NY, USA, 2009, pp. 1569-1576.

[76] P. Parvathala, K. Maneparambil, W. Lindsay, FRITS - a microprocessor
functional BIST method, in: Test Conference, 2002. Proceedings. International,
2002, pp. 590-598.

[77] A. Paschalis, D. Gizopoulos, Effective software-based self-test strategies for
on-line periodic testing of embedded processors, Computer-Aided Design of
Integrated Circuits and Systems, IEEE Transactions on vol. 24 (1) (2005)
88-99.

[78] J. Persson, N. Somes, T. Wong, Hydraulics efficiency of constructed wetlands
and ponds, Water Science & Technology 40 (3) (1999) 291-300.

[79] R. Poli, A simple but theoretically-motivated method to control bloat in genetic
programming, in: Genetic Programming, Springer, 2003, pp. 204-217.

107

Bibliography

[80] M. A. Potter, K. A. D. Jong, A Cooperative Coevolutionary Approach to
Function Optimization, in: Y. Davidor, H. Schwefel, R. Méanner (eds.), 3rd
International Conference on Parallel Problem Solving from Nature (PPSN III),
Springer-Verlag, Berlin, 1994, pp. 249-257.

[81] M. Psarakis, et al., Microprocessor Software-Based Self-Testing, IEEE Design
& Test of Computers vol. 27 (3) (2010) 4-19.

[82] B. B. Rad, M. Masrom, S. Ibrahim, Camouflage in malware: from encryption
to metamorphism, IJCSNS International Journal of Computer Science and
Network Security 12 (8) (2012) 74-83.

[83] J. Rajski, J. Tyszer, M. Kassab, N. Mukherjee, R. Thompson, K.-H. Tsali,
A. Hertwig, N. Tamarapalli, G. Mrugalski, G. Eide, J. Qian, Embedded
Deterministic Test for Low-Cost Manufacturing Test., in: ITC, IEEE Computer
Society, 2002, pp. 301-310.

[84] R. Rivest, The MD5 Message-Digest Algorithm, RFC 1321.

[85] C. D. Rosin, R. K. Belew, New methods for competitive coevolution, Evolu-
tionary Computation 5 (1) (1997) 1-29.

[86] E. Sdnchez, M. S. Reorda, G. Squillero, Test Program Generation from High-
level Microprocessor Descriptions, in: M. S. Reorda, Z. Peng, M. Violante (eds.),
System-level Test and Validation of Hardware/Software Systems, Springer
London, 2005, pp. 83-106.

[87] E. Sanchez, M. Schillaci, G. Squillero, Enhanced Test Program Compaction
Using Genetic Programming, in: G. G. Yen, L. Wang, P. Bonissone, S. M. Lucas
(eds.), Proceedings of the 2006 IEEE Congress on Evolutionary Computation,
IEEE Press, Vancouver, 2006, pp. 3207-3212.

[88] E. Sanchez, M. Schillaci, G. Squillero, Evolutionary Optimization: the uGP
toolkit, Springer, 2011.

[89] E. Sanchez, G. Squillero, A. Tonda, Group Evolution: Emerging sinergy
through a coordinated effort, in: Evolutionary Computation, IEEE Congress
on, 2011, pp. 2662-2668.

[90] E. Sanchez, G. Squillero, A. Tonda, Industrial Applications of Evolutionary
Algorithms, vol. 34 of Intelligent Systems Reference Library, Springer, 2012.

[91] B. Sareni, L. Krahenbuhl, Fitness sharing and niching methods revisited,
Evolutionary Computation, IEEE Transactions on 2 (3) (1998) 97-106.

[92] H.-P. Schwefel, Cybernetic Evolution as Strategy for Experimental Research in
Fluid Mechanics (Diploma Thesis in German), Hermann F7ttinger-Institute
for Fluid Mechanics, Technical University of Berlin, 1965.

93] J. Segura, Malware Diaries: Malware armoring is now the norm,
http://blogs.paretologic.com /malwarediaries/index.php/2008,/04 /14 /malware-
armoring-is-now-the-norm/ (April 2008).

[94] J. Shen, J. A. Abraham, Synthesis of Native Mode Self-Test Programs, Journal
of Electronic Testing: Theory and Applications vol. 13 (2) (1998) 137-148.

108

Bibliography

[95] SourceForge, Home of nGP3, http://sourceforge.net/projects/ugp3/.

[96] E. H. Spafford, Computer Viruses as Artificial Life, Journal Of Artificial Life 1
(1994) 249-265.

[97] G. Squillero, MicroGP — An evolutionary assembly program generator, Genetic
Programming and Evolvable Machines 6 (3) (2005) 247-263.

[98] G. Squillero, Artificial evolution in computer aided design: from the optimiza-
tion of parameters to the creation of assembly programs, Computing 93 (2-4)
(2011) 103-120.

[99] G. Squillero, A. P. Tonda, A novel methodology for diversity preservation
in evolutionary algorithms, in: Proceedings of the 2008 GECCO conference
companion on Genetic and evolutionary computation, ACM, 2008, pp. 2223—
2226.

[100] C. Suen, N-gram statistics for natural language understanding and text pro-
cessing, Pattern Analysis and Machine Intelligence, IEEE Transactions on (2)
(1979) 164-172.

[101] Symantec, Understanding and Managing Polymorphic Viruses,
http://www.symantec.com/avcenter /reference /striker.pdf.

[102] P. F. . P. Sz6, Zmist Opportunities, in: VIRUS BULLETIN MARCH 2001 /
VIRUS ANALYSIS 1, 2001.

[103] S. M. Thatte, J. A. Abraham, Test Generation for Microprocessor, IEEE
Transaction on Computers vol. C-29 (6) (1980) 429-441.

[104] A. Tonda, E. Lutton, G. Squillero, A benchmark for cooperative coevolution,
Memetic Computing 4 (4) (2012) 263-277.

[105] A. P. Tonda, E. Lutton, G. Squillero, Lamps: A Test Problem for Cooperative
Coevolution., in: D. A. Pelta, N. Krasnogor, D. Dumitrescu, C. Chira, R. I.
Lung (eds.), NICSO, vol. 387 of Studies in Computational Intelligence, Springer,
2011, pp. 101-120.

[106] A. M. Turing, Computing Machinery and Intelligence, Mind 9 (1950) 433-360.

[107] J. Von Neumann, A. W. Burks, et al., Theory of self-reproducing automata.

[108] E. Weinberger, NP completeness of Kauffman nk model, a tuneably rugged
fitness landscape, Santa Fe Institute Technical Reports.

[109] J. M. Whitacre, T. Q. Pham, R. A. Sarker, Use of statistical outlier detection
method in adaptive evolutionary algorithms, in: M. Cattolico (ed.), GECCO,
ACM, 2006, pp. 1345-1352.

[110] B. White, H. Nepf, Scalar transport in random cylinder arrays at moderate
Reynolds number, Journal of Fluid Mechanics 487 (25) (2003) 43-79.

[111] A. Worman, V. Kronnas, Effect of pond shape and vegetation heterogeneity on
flow and treatment performance of constructed wetlands, Journal of Hydrology
301 (1-4) (2005) 123-138.

[112] W. Wu, Computational river dynamics, CRC, 2007.

109

Bibliography

[113] I. You, K. Yim, Malware obfuscation techniques: A brief survey, in: Broad-
band, Wireless Computing, Communication and Applications (BWCCA), 2010
International Conference on, IEEE, 2010, pp. 297-300.

110

	Introduction
	Background: Evolutionary Algorithms
	Natural and artificial evolution
	The classical paradigms
	Genetic programming

	GP
	Design Principles
	 GP Evolution Types
	Standard Evolution
	Multi-Objective Evolution
	Group Evolution

	Evaluator
	Cache

	Operators' Activation Probability
	The Multi-Armed Bandit Framework
	DMAB and Operators Selection in EA
	GP Approach
	Notations
	Operator Failures
	Credit Assignment
	Operator Selection

	A Novel Distance Metric
	Introduction
	GP Approach
	Experimental Evaluation

	GP Operators
	Mutation Operators
	Crossover Operators
	Scan Operators
	Group Operators
	Random Operator

	Evolutionary Algorithms Applications
	Automatic Generation of On-Line Test Programs through a Cooperation Scheme
	Introduction
	Background
	Concurrent SBST generation of test programs for on-line testing
	Case studies and Experimental results

	An Evolutionary Approach to Wetland Design
	Introduction
	Background
	Proposed Approach
	Experimental Evaluation

	Towards Automated Malware Creation: Code Generation and Code Integration
	Introduction
	Background: Stealth and Armoring Techniques
	Automated Malware Creation
	Experimental Results

	An Evolutionary Approach for Test Program Compaction
	Introduction
	Background
	Proposed Approach
	Case Study and Experimental Results

	Conclusions
	Acronyms
	List of Publications
	Bibliography

