Leveraging the Cloud to Develop Service Robotics Applications

Ludovico Orlando Russo

DAUIN, Politecnico di Torino JOL CRAB of TIM Ph.D. Student, XXIX Cycle Tutors: Prof. Basilio Bona, Ing. Marco Gaspardone (TIM)

Outline

- Introduction and Motivations
 - Context of my PhD Activity
 - Overview on Service Robotics and Cloud Robotics
- Cloud Robotics Platform (by TIM) and my contributions
- Architectural Patterns to develop Cloud based Robotics Applications
 - Environmental Monitoring
 - Telepresence and Telemanipulation
- Service Robotics applications prototypes
 - Robot@CED
 - PARLOMA
- Other Results and Conclusions

TIM JOINT Open Lab

- Research Labs of TIM placed in several Italian Universities under a Open Innovation Program
- Main Goal: encourage universities and researchers to develop market ready technologies
- TIM JOL CRAB: Connected Robotics Application Lab

Service Robotics

A service robot is a robotic system design to assists human beings

Service Robotics: professional VS personal

Professional Service Robots help

people in their workplace:

- Agriculture
- Logistics
- Security & Monitoring
- ..

Personal Service Robots assist people

to perform domestic tasks:

- Vacuum Cleaners
- Toys & Education
- Disable people assistant
- ...

Service Robotics Market is Growing fast

Source: Samsung Economic Research Institute (2013)

Service Robotics - Technological Constraints

A Service Robot usually runs under **unstructured environment**:

- high intelligence needed to solve tasks that are very simple for humans (Navigation, Grasping ...)
 - Manage high quantity of data from the environment
 - Develop high level models
 - Make decision fast
- Battery Capacity
- Size and weight of the Robot (drones)
- Costs

Cloud Robotics

- A paradigm to solve the constraints of Onboard Intelligence of Service Robotics
- Leverage Internet Based Technologies in order to offload
- Introduced in 2010 by James Kuffner
- IoT, Industry 4.0
- It aims at leveraging internet based technologies to enhance robotics application

Cloud Robotics - Advantages and Issues

According to [Ben Kehoe et al.], the advantages of Cloud Robotics are:

- Cloud Computing
- Big Data
- Collective Robot Learning
- Human Computation (telepresence)

And also some Issues:

- New level of Complexity in the development of a Robot Application
- Real Time is not guaranteed

Ben Kehoe, Sachin Patil, Pieter Abbeel, and Ken Goldberg. A survey of research on cloud robotics and automation. Automation Science and Engineering, IEEE Transactions on, 12(2):398–409, 2015.

ROS: the Robot Operating System

- Framework for Robot Application Development

- OS-like functionalities (meta-operating system)
- Hardware Abstraction / Drivers
- Multiprocess Communication
- Package Management

- Collection of Libraries, Tools and Conventions

- Stacks
- Packages

- Ecosystem and Community

TIM Cloud Robotics Platform

TIM Cloud Robotics Platform

- Platform as a Service (PaaS) to develop Robot Application
- ROS Network Across Remote Machines and Robots
- Simple Restful API to manage the Platform

My Contributions

- Develop a Cloud Manager to remotely handle a ROS Network (shared by the platform).
- Design novel Robot Frameworks to develop service robotic applications.
- Prototype Robot Applications based on those frameworks.
 - Robot@CED
 - PARLOMA

PM Installed NI A A Q deployed R sc Installed PM R deployed E SC (N)deployed -A deployed

Cloud Robot Application Manager - Specifications

- Common Needs in a Cloud Robotics Application
 - Cloud Storage (TIM)
 - Cloud Computing (TIM)
 - Web-based User Interface
 - Development Tools
- Developing a general pattern to simplify the development of a cloud robotics application
 - RESTFul API to Interact with ROS Machines
 - Remote programming and debugging the application

Topics List		
Name	Туре	Actions
/hotbot/led	dotbot_msgs/Led	Close
/rosout	rosgraph_msgs/Log	Echo
/hotbot/speed	dotbot_msgs/Speed	Echo
/rosout_agg	rosgraph_msgs/Log	Echo
/diagnostics	diagnostic_msgs/DiagnosticArray	Echo
/hotbot/input	dotbot_msgs/input	Echo
/hotbot/led		

"led1": false, "led3": false, "led2": false

Cloud Robot Application Manager - Architecture

Cloud Platform

Robot Based Environmental Monitoring

Robot Based Environmental Monitoring

Sensor Networks

- Sensor Networks are a common application of IoT
 - Distributed Network of Sensors managed by a cloud application
- Application
 - Monitoring
 - Diagnostic

Real Case Applications

- Robot@CED
- Wifi Coverage Monitoring (future works)

Virtual Sensor Network

- A Cloud Robotics Alternative to Sensor Networks:
 - Mobile Robot
 - Autonomous Navigation
 - Environmental Sensors Onboard
 - Centralized Management
- PROS:
 - Simple to manage and configure
 - No Intervention on the environment
 - Reconfigurable
 - Scalable
- CONS:
 - No RT Measurements
- Why Virtual?
 - Transparent to the User
 - Robot Tasks are localized sources of Measurements
 - The User can Reconfigure the system from a Web Interface

Virtual Sensor Network - Architecture

Robot@CED

- Data Center are the most energy consumption building in the world
 - 1.5% of total electrical energy demand
- Energy Management of datacenter is expensive
 - Power the Servers
 - Cooling System
- PUE: Power Usage Effectiveness
 - 1.7 avarage

 $PUE = \frac{P_{tot}}{P_{tT}}$

Free Air Cooling System

- The hot/cold Aisles layout maximizes the air cooling capacity
- Cold Air temperature and humidity must be controlled
 - Optimal Ranges [20-24]°C [40-55]%

Data Center Monitoring

ALL MARKED MARKED

All the solutions aimed at monitor temperature and humidity values in datacenter in order to

- Maintain the Air values in the suggested optimal ranges
- Detect HotSpots

Environmental Sensor Networks

State of the Art Solution to fully measure the Area

- Dense Sensing Network
 - Measurements Nodes (sensors) placed in each rack
- PRO:
 - RT measurements
- CONS
 - Not scalable
 - High installation and maintenance costs
 - Difficult to manage

Practical Solution Adopted by Data Center Managers

- Sparse Sensor Network
 - Few Nodes each Room
- Human Operator that periodically inspect the Room

Robot@CED

Data Center Monitoring

Hardware Layer

- A Turtlebot 2 Robot base platform
- Temperature/Humidity Sensor
- Thermal Camera
- Laser Range Finder
- Laptop running ROS

Sensing Layer

- Localized Temperature/Humidity logger
- Localized Thermal Images logger
- HotSpot Autodetection Algorithm

Experiments and Results

We tested the application in two Real Scenarios:

- 1. Rozzano Data Center of Telecom Italia
 - a. the bigger Data Center in Italy
 - b. Tests performed in two rooms
 - c. NDA agreement
- 2. Data Center of Politecnico di Torino
 - a. Composed by three small rooms
 - b. Hold the University IT Infrastructure

Experimental Setup

Thanks to

- Marcello Maggiora

- Data Center of Politecnico di Torino
 - PUE = 1.53
 - 2 racks rows: 1 hot aisle and 2 cold aisles
- Security
 - Dedicated WiFi network
 - VPN to remote access
- Mapping in 5min
- 10 minute of recharging after each mission

Mission Setup

Each Mission takes about 6min

Collected Temperature/Humidity data (1)

temperature

Collected Temperature/Humidity data (2)

Thermographic analysis (1)

Thermographic analysis (2)

$$p_{i}^{(k)} = \begin{pmatrix} x_{i} \\ y_{i} \\ h_{i}^{(k)} \end{pmatrix}, h_{i}^{(k)} = \frac{k}{N+1}h_{max}, k = 1, \dots, N.$$

$$\tilde{p}_{i}^{(k)} = \lambda \begin{pmatrix} p_{i}^{(k)} \\ 1 \end{pmatrix} = KT \begin{pmatrix} p_{i}^{(k)} \\ 1 \end{pmatrix}$$

$$T_{i}^{(k)} = \mathcal{I} \begin{pmatrix} p_{i}^{(k)} \end{pmatrix}.$$
Image

Thermographic analysis (3)

Telepresence and Telemanipulation

Robot Teleoperation Based on Natural Interfaces

Telepresence

- New application of Robotics that allow a user to interact with a remote environment

Common Needs

- An Internet communication channel
- Input Processing
- Classification Algorithm

Real Case Application

- PALOMA
- Tele-rehabilitation

Natural Interface

- An Intuitive Interface between the User and a Computer.

Contributions

- Giuseppe Airò Farulla (PhD prof. Prinetto)
- Sant'Anna di Pisa, Biorobotics Institute
- CNR IEIIT

Robot Teleoperation Based on NI - Architecture

PARLOMA: A Telecommunication System for deafblind People

Deafblindness force people to live in isolation:

- Severe disease
- Strong limitation in communication
- Communication capabilities depends on the nature of this condition

One (but not unique) group of communication languages are the **Tactile Sign Languages (tSLs)**:

- pseudo-languages derived from SLs
- Tact sense used instead of sight
- People needs to be in the same place to communicate in tSL.

PARLOMA is a research project that aims at developing a system able to remotize tSL communication, to help deafblind people to communicate

Experiment 1: Feasibility of the Project

- Prensilia Robot Hand, designed by Sant'Anna di Pisa
- Deafblind person was asked to recognize different handshapes performed manually by the hand
- The user was able to recognize all the handshapes that the hand was able to reproduce.

Problems:

- Not enough DoF to reproduce all LIS Signs
- Thump difficult to recognize

Hand Tracking (RGBD)

Hand Labeler using a per-pixel classification based on Random Forest Classifier

$$\mathcal{F}(\mathbf{x}) = \left\{ F_{\mathbf{u},\mathbf{v}}(I,\mathbf{x}) = \sum_{\mathbf{j}\in(\mathbf{u},\mathbf{v})} I\left(\mathbf{x} + \frac{\mathbf{j}}{I(\mathbf{x})}\right), ||\mathbf{u}|| < R, ||\mathbf{v}|| < R \right\}$$

$$\text{The system has been trained using synthetic data generated by a parametric 3D module}$$

$$\text{The system has been trained using synthetic data generated by a parametric 3D module}$$

$$\text{The system has been trained using synthetic data generated by a parametric 3D module}$$

$$\text{The system has been trained using synthetic data generated by a parametric 3D module}$$

$$\text{The system has been trained using synthetic data generated by a parametric 3D module}$$

$$\text{The system has been trained using synthetic data generated by a parametric 3D module}$$

$$\text{The system has been trained using synthetic data generated by a parametric 3D module}$$

$$\text{The system has been trained using synthetic data generated by a parametric 3D module}$$

$$\text{The system has been trained using synthetic data generated by a parametric 3D module}$$

$$\text{The system has been trained using synthetic data generated by a parametric 3D module}$$

$$\text{The system has been trained using synthetic data generated by a parametric 3D module}$$

$$\text{The system has been trained using synthetic data generated by a parametric 3D module}$$

$$\text{The system has been trained using synthetic data generated by a parametric 3D module}$$

$$\text{The system has been trained using synthetic data generated by a parametric 3D module}$$

Hand Shape Classifier

- Recognizing the handshape from the skeleton

$$\mathcal{P}(\mathcal{S}) = \left\{ d_{k,l} = \|\mathbf{j}_k - \mathbf{j}_l\|, \forall \mathbf{j}_k, \mathbf{j}_l \in \mathcal{S}, k < l \right\},\$$

- Feature: list of distances between each pair of joints.

Experiment 2: testing the main architecture

Open Source Robot Hand

- Branch of the Inmoov Hand project
- 3D printed
- 9 DoF
- Bio Inspired
- 3 DoF Wrist based on the Agile Wrist mechanics

Experiment 3: Testing the Parloma Hand

- Expert in SL (visual) + deaf person (tactile)
- Both confirmed improvements from previous hand

Problems:

- Precision in Finger Position
- Finger cross should be more clear

(a) Letter V (b) Letter U (c) Letter R (d) Letter Y (e) Letter H (f) Letter P

PARLOMA: future works

- Development of arm and shoulder
- Improvements of the mechanics
- Dynamic Signs recognition and reproduction
- Leap Motion implementation

Other Results and Conclusions

Tele-rehabilitation

DotBot - Open Source Robot to Teach Cloud Robotics

B	R Cloud					
	led_cnt, by Ludovico Russo	► Run H Save	Shell	Ł Download	Edit Info	
1	#!/usr/bin/env python					
2						
3	import rospy					
4	from dotbot_msgs.msg import Led					
5	import sys					
6						
7						
8						
9	def pari(num):					
10	if num % 2 == 0:					
11	return True					
12	else:					
	return False					
13						
13						
13 14 15	class Node():					
13 14 15	<pre>class Node(): definit(self):</pre>					
13 14 15 16	<pre>class Node(): definit(self): self.led_pub_white = ros</pre>	spy.Publisher('/white/	led', Led,	queue_size=1	
13 14 15 16	<pre>class Node(): definit(self): self.led_pub_white = ros self.led_pub = rospy.Put</pre>	spy.Publisher(olisher('led',	'/white/ Led, qu	<pre>led', Led, eue_size=1</pre>	queue_size=1	

HotBlack ROBOTICS

- Open Source and Open Hardware
- Connected to a Cloud Robotic Platform
- Developed for the Robot@School Project
- Used by some institutions in Italy
 - Liceo Federico II di Svevia Melfi (PZ)
 - ITIS Avogrado Torino
 - IIS Vallauri Fossano (TO)

- ...

Conclusions

- Cloud Robotics can be applied to real service robotics applications
 - Robot@CED is ready help datacenter manager to improve energy efficiency
 - PARLOMA has the possibility to help deafblind person to communicate remotelly
- Future Works
 - Explore the projects from a Business point of view
 - Manage Security in the IT communication

Thank You!