Design Techniques for Energy-Quality Scalable Digital Systems

Candidate: Daniele Jahier Pagliari
Supervisors: Enrico Macii, Massimo Poncino

Turin, 18 May 2018
Doctoral Program in Computer and Control Engineering (30th Cycle)
Outline

• Introduction and Motivation

• EQ Scalable Design Techniques for Processing Hardware

• EQ Scalable Design Techniques for Serial Interconnects

• EQ Scalable Design Techniques for OLED displays

• Conclusions and Future Work
• Energy efficiency is a key objective in modern digital systems

Battery operated devices
Energy harvesting

Mobile, IoT

Diminishing returns of classic techniques

Technology scaling
Voltage Scaling

• A lot of energy is spent in ensuring that the system performs **reliable, precise and accurate** operations (e.g. floating point, redundancy, etc.)
• Many modern computing applications are error tolerant (or resilient)

• For these applications, controlled errors in internal operations do not have a dramatic impact on final output quality

• Error tolerance can have different origins:
• **Noisy data** (e.g. from sensors) are affected by environmental noise
 • Errors can be tolerated as long as their effect on outputs is negligible w.r.t. the effect of noise

• **Redundant data** do not add information
 • Their computation can be approximated or skipped without degrading output quality
• The definition of **correct outputs** can be fuzzy or informal
 • If correct outputs are unknown (e.g. optimization problem)
 • If multiple outputs are equivalently good (e.g. Google search)

• Many applications have **human users**
 • Small or rare errors (in time and space) are not perceived by our sense organs
• Some **computational patterns** naturally reduce the effect of errors

• **Iterative refinement** steps converge to correct results even in presence of (controlled) errors.
 - E.g. Gradient Descent

• **Statistical aggregation** tends to reduce the effect of errors
 - E.g. Data mining, clustering, etc.
• Purposely introducing errors (i.e. relaxing the precision, reliability and accuracy of operations) can yield energy benefits:
 • Reducing data-path precision
 • Reducing design margins
 • Eliminating redundancy
 • Evaluating approximate functions
 • Etc.

• Energy-Quality (EQ) scalable design techniques exploit this tradeoff systematically for error tolerant applications

• The available “quality slack” depends on: task, context and inputs
• EQ Scalable System Architecture:
Motivation

• Our work focuses on three important aspects which are given little consideration in the EQ scalable design state-of-the-art:

1. Generality:
 • Holistic EQ scalability (not limited to processing)
 • Runtime quality-configurability

2. Automation and integration:
 • Compatibility with EDA tools
 • Compatibility with standard protocols

3. Focus on overheads:
 • Avoid implementations that offset energy gains
Outline

• Introduction and Motivation

• EQ Scalable Design Techniques for Processing Hardware

• EQ Scalable Design Techniques for Serial Interconnects

• EQ Scalable Design Techniques for OLED displays

• Conclusions and Future Work
Target: Hardware (HW) data-path modules

EQ Scalable Data-Path HW

- Reduced-Precision Redundancy
- Dynamic Voltage and Accuracy Scaling
 - Two Variants

Objectives:
- Automation (integration with EDA tools)
- Generality
• Reduced-Precision Redundancy:
 • Voltage Over-Scaling (VOS) on the original HW block (MDSP)
 • Error-Control (EC) block to mitigate the effect of timing errors

• EC block structure:
 • Estimator of the error-free output:
 • Implemented as a reduced-precision Replica of the MDSP
 • Decision block to select between MDSP and Replica outputs
EDA Flow for Reduced-Precision Redundancy

Limitations of classic RPR implementations:

1. Simplified and unrealistic assumptions on the input statistics
 - All timing path activations assumed equally probable.

1. No integration with standard EDA tools:
 - Simplified VOS timing degradation model
 - Ad-hoc replica implementation
EDA Flow for Reduced-Precision Redundancy

- **Goal of the proposed method:**
 - Automatically add RPR to the existing *gate-level netlist* of a data-path HW block
 - Under a user-defined *minimum output quality* constraint

- **Features:**
 1. Functionality *agnostic*
 2. Fully *automatic* and integrated with EDA tools
 3. Based on back-annotated *simulations* (with realistic models)
Experimental Results:

- Accurate consideration of input statistics is fundamental.

FIR filter RPR power savings for two input sets under identical conditions and constraints.

Power savings under realistic quality constraints:

The proposed method is general.

Area overheads under realistic quality constraints:

Design Techniques for Energy-Quality Scalable Digital Systems

December 10, 2018
Dynamic (Voltage) and Accuracy Scaling:

- Advantages:
 - Based on technological knobs only, no architectural modification
 - General
 - Low overheads
 - Many energy/quality configurations

- Limitations:
 - Integration with standard EDA flows
 - Slack does not increase as expected ("wall of slack")
 - Limited power benefits!

Design Techniques for Energy-Quality Scalable Digital Systems
December 10, 2018
EDA Flows based on DAS/DVAS

- Solution 1: **Combination with fine-grain \(V_{th} \) tuning**
 - Split the HW block into \(V_{th} \) “domains”
 - Use \(V_{th} \) tuning to speed-up **timing-critical sections** of the HW for each precision
 - Implemented on FDSOI using **back-biasing**

Design Techniques for Energy-Quality Scalable Digital Systems
• **Solution 2: Application-driven Synthesis Flow**

 • Use **multi-scenario** optimization to prevent the wall of slack
 • Take into account the application-dependent **usage frequency** of each precision
EDA Flows based on DAS/DVAS

- Experimental Results (Solution 1):

 Design Techniques for Energy-Quality Scalable Digital Systems

 December 10, 2018
Qualitative comparison of the proposed methods:

RPR based solution
- Rare unpredictable errors
- Two “quality modes”
- \(\approx 100\% \) area overhead

DVAS based solutions
- Systematic “errors”
- Many “quality modes”
- \(\approx 10\% \) area overhead

1. Jahier Pagliari et al, “An automated design flow for approximate circuits based on reduced precision redundancy”, *ICCD2015*
2. Jahier Pagliari et al, “A methodology for the design of dynamic accuracy operators by runtime back bias”, *DATE2017*
• Introduction and Motivation

• EQ Scalable Design Techniques for Processing Hardware

• EQ Scalable Design Techniques for Serial Interconnects

• EQ Scalable Design Techniques for OLED displays

• Conclusions and Future Work
EQ Scalable Design of Serial Interconnects

• **Target:** Serial Buses
 • De facto standard for **sensors, actuators** and I/O controller interfaces
 • Higher frequencies, no jitter, reduced crosstalk, lower cost (# of pins)
 • **Power consumption:**
 • Mostly dynamic \(P_{chan} = \alpha C_{tot} V_{DD}^2 f \)
 • Energy reduction can be achieved by **reducing \(\alpha \rightarrow \text{data encoding!}**

• **Relevant?**
 • The serial transmission of a **12-bit datum** can **consume as much as** the execution of a **32-bit instruction!** (e.g. on a large off-chip PCB trace)
 • A system may include **tens of serial buses**
Error tolerant serial bus traces:

- Highly temporally correlated on average
- Often “bursty”: long almost constant (idle) sections and short (bursty) sections of fast and large variation

Proposed Encodings (ADE and Serial-T0): leverage the correlation and “burstiness” of data to introduce controlled approximations on encoded data with small impact on output quality.

Goals:
- Integration: compatibility with standard protocols (I2C, SPI, etc.)
- Overheads: encoding and decoding HW/SW do not offset the energy gains on the bus
Approximate Differential Encoding (ADE):

- Exploit the effectiveness of **Differential Encoding (DE)** for correlated data
- Combine it with quality-driven **LSB saturation** to improve savings

<table>
<thead>
<tr>
<th>Time</th>
<th>t-1</th>
<th>t</th>
<th>t+1</th>
<th>Input words</th>
<th>Codewords</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>101010</td>
<td>101011</td>
<td>101000</td>
<td>101010</td>
<td>00000000</td>
</tr>
</tbody>
</table>

14 Total Transitions

0 Total Transitions
• Serial-T0 (ST0):

• Exploit **idle sections** of bursty data for energy savings
• Selectively transmit the correct datum or a special **0-transitions pattern**
 (interpreted as “*repeat previous datum*”)

<table>
<thead>
<tr>
<th>Time</th>
<th>t-1</th>
<th>t</th>
<th>t+1</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>010011</td>
<td>010101</td>
<td>101001</td>
</tr>
<tr>
<td>Input words</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>010011</td>
<td>111111</td>
<td>101001</td>
</tr>
<tr>
<td>Codewords</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Specific for ”bursty” signals (e.g. images)
• Experimental Results:

EQ tradeoff for accelerometer data

EQ tradeoff for RGB image data
Experimental Results:

EQ tradeoff for an OCR application
• Introduction and Motivation

• EQ Scalable Design Techniques for Processing Hardware

• EQ Scalable Design Techniques for Serial Interconnects

• EQ Scalable Design Techniques for OLED displays

• Conclusions and Future Work
EQ Scalable Image Transformations for OLEDs

- **Target**: OLED Displays
 - Composed of emissive devices
 - Image-dependent power consumption
- **New dimension**:
 - Trade-off power for image “error”

- **State-of-the-art Algorithms**:

 For each pixel \(Y \)
 \[Y' = kY, \quad k < 1 \]

 Brightness (luminance) scaling

 Power saving + image (contrast) enhancement

 For each pixel \(Y \)
 \[Y' = T(Y) \]

Design Techniques for Energy-Quality Scalable Digital Systems

December 10, 2018
EQ Scalable Image Transformations for OLEDs

• Limitations of the state-of-the-art:
 • High-complexity (nonlinear optimization, histogram processing)
 • No implementation overheads analysis

• Proposed Techniques:
 • Low-overhead Adaptive Brightness Scaling (LABS)
 • Low-overhead Adaptive Power Saving and contrast Enhancement (LAPSE)

• Goals:
 • Automation: plug-and-play frameworks based on regression models trained with representative images
 • Overheads: implementable in SW or HW, in real-time, with low energy consumption.
• **Low-overhead Adaptive Brightness Scaling (LABS):**
 • Adaptive brightness scaling: change the scaling factor k depending on the image.

 \[Y' = kY \]

 • Co-optimize **power saving** and **image alteration**: Power-Similarity Product (PSP)

 \[k_{opt} \propto \frac{1}{\sum Y} \]
EQ Scalable Image Transformations for OLEDs

- **Low-overhead Adaptive Brightness Scaling (LABS):**
 - Linear regression to fit optimal scaling factor to image luminance
 - Trained offline with representative images
 - Online transformation becomes $O(#\text{pixels})$ and only involves simple operations
• LABS Experimental Results:

Average savings (MSSIM ≈ 0.93)
EQ Scalable Image Transformations for OLEDs

- Low-overhead Adaptive Power Saving and Contrast Enhancement (LAPSE):
 - Observation: state-of-the-art transformations can be approximated by a 3rd order polynomial of the pixels luminance

\[
T(Y) = a_3 Y^3 + a_2 Y^2 + a_1 Y
\]

Easy to implement in SW and HW

Goal: minimize power and maximize contrast under a maximum alteration (MSSIM) constraint
• **Low-overhead Adaptive Power Saving and Contrast Enhancement (LAPSE):**
 • Training-based approach similar to LABS
 • Different objective and constraints

EQ Scalable Image Transformations for OLEDs

Offline phase

Online phase
• LAPSE Experimental Results:

- **Input**:
- **State-of-the-art technique (PCCE)**: Saving 61.6%, MSSIM 0.692
- **LAPSE**: Saving 59.5%, MSSIM 0.799

- **Input**:
- **State-of-the-art technique (PCCE)**: Saving 60.3%, MSSIM 0.795
- **LAPSE**: Saving 67.4%, MSSIM 0.791

- **Input**:
- **State-of-the-art technique (PCCE)**: Saving 60.79%, MSSIM 0.860
- **LAPSE**: Saving 55.1%, MSSIM 0.691

Similar results despite much lower complexity
LAPSE Experimental Results:

<table>
<thead>
<tr>
<th>Image Size</th>
<th>SW Ex. Time [ms]</th>
<th>HW Ex. Time [ms]</th>
</tr>
</thead>
<tbody>
<tr>
<td>512x512</td>
<td>6.49</td>
<td>0.52</td>
</tr>
<tr>
<td>1280x1280</td>
<td>34.68</td>
<td>3.28</td>
</tr>
</tbody>
</table>

- Hardware energy overhead per image \(\approx 1000x\) smaller than OLED energy consumption
- (LABS implementation is even simpler!)
• Introduction and Motivation

• EQ Scalable Design Techniques for Processing Hardware

• EQ Scalable Design Techniques for Serial Interconnects

• EQ Scalable Design Techniques for OLED displays

• Conclusions and Future Work
Conclusions and Future Work

• A set of EQ scalable design techniques has been presented that:
 1. Target **different components** of a digital system, not limited to processing
 2. Consider in detail the **integration** with industrial best-practices (e.g. tools, standard protocols)
 3. When possible, favor **automated** and widely applicable (**general**) solutions
 4. Thoroughly evaluate and try to reduce the energy **overheads** associated with EQ scalability

• All proposed techniques allow runtime tuning of the energy-quality tradeoff:
 • Fundamental considering the **time-varying** nature of quality constraints
Conclusions and Future Work

• Future directions:

1. Apply the proposed techniques within complete applications (started):
 • E.g. use EQ scalable HW blocks for **machine learning** acceleration

2. Investigate **system-level** EQ scalable design:
 • Synergistic application of techniques for different components and abstraction levels
 • Implementing the EQ “**control loop**” becomes more complex