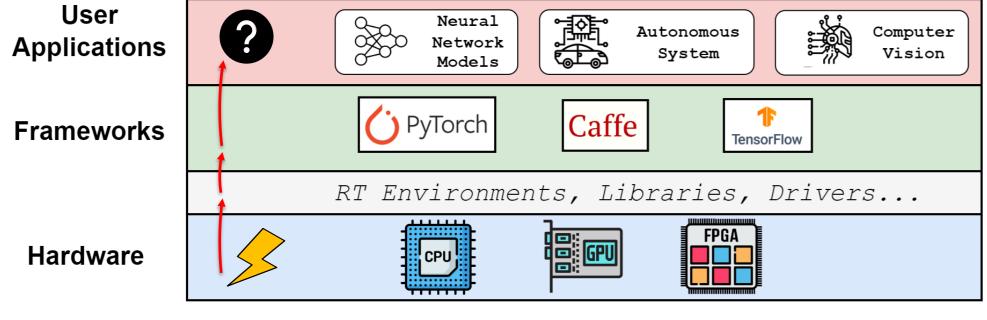


HW-SW Fault Tolerance Design Techniques for Systems on Programmable Devices

PhD Candidate:

Corrado De Sio

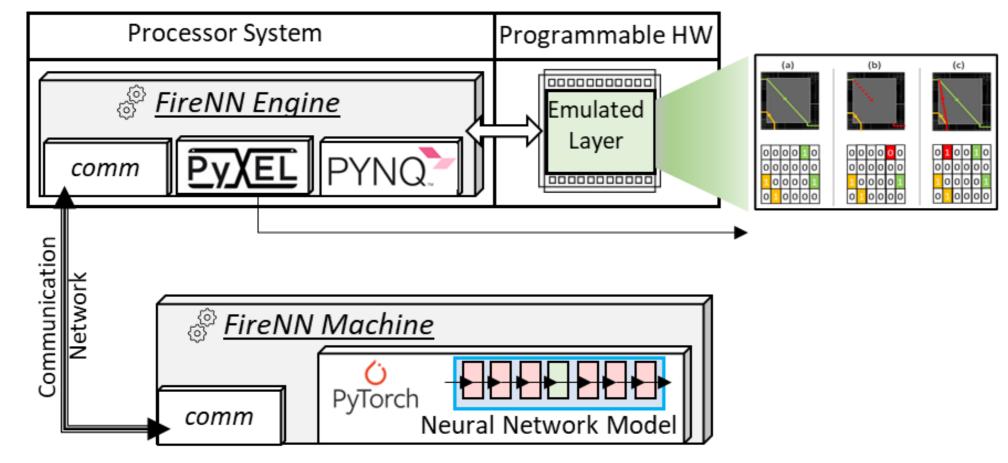

1.Introduction

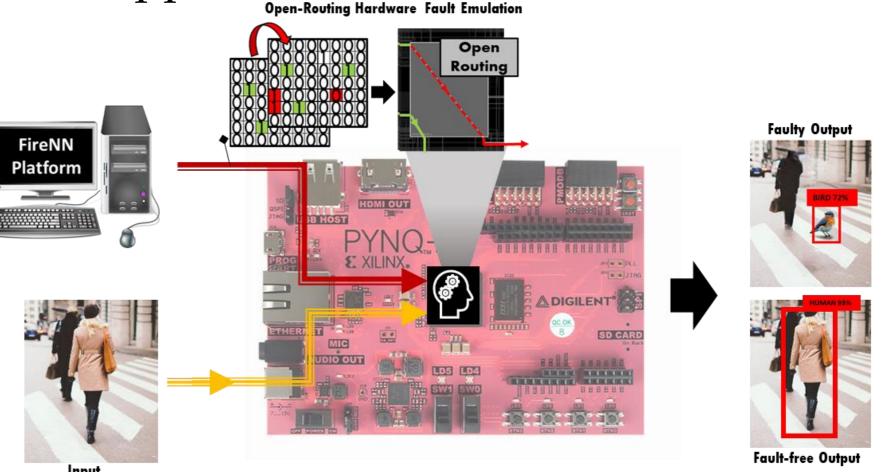
Hardware-accelerated solutions are mandatory to meet high-performance requirements, while fault modeling and analysis are essential to delivering faulttolerant safety-critical systems.

exploiting the reconfigurability feature of the device, acting at the bitstream level.

4. Results

The proposed platform makes it possible to assess the resilience of the hardware implementation at the microarchitectural level, which cannot be provided by softwarebased approaches.


Conceptual Hardware and Software Stack for hardware-accelerated AI applications 2.Goal


This research proposes a methodology for evaluating the resilience of neural network combining programmable systems, hardware and software reliability analysis.

3.Proposed Methodology

Heterogenous System-on-chips, providing hardware and software programmability, are proposed for evaluating the effects of hardware faults.

ZYNQ PLATFORM

Conceptual view of hardware fault emulation leading to misclassification

For the hardware accelerators analyzed, the open-routing fault model resulted in a high degradation of confidence that often led to misclassifications, especially compared to software-level analysis results, which can then produce an overestimation of the true reliability of the system.

RELIABILITY EVA	ALUATION OF AN ALEX	NET CONVOLUTIONAL LAYER
	Software Fault	Unbrid based Fault

Method	Software Fault Injection		Hybrid-based Fault Emulation (<i>FireNN</i>)		Method	Method Hybrid-based Faul Emulation (<i>FireNN</i>	
Fault Model	SEU in Weights	SEU in Data	SEU in Conf. Memory	Open Routing	Fault Model	SEU in Conf. Memory	Open Routing
Error Rate	40.57%	46.16%	11.05%	59.62%	Error Rate	12.93%	60.38%
Failure Rate	2.10%	15.48%	5.12%	40.07%	Failure Rate	5.81%	42.17%
Fail./Err.	5.18%	33.53%	46.33%	67.21%	Fail./Err.	44.93%	69.84%
Timeouts	0%	0%	0.40%	2.78%	Timeouts	0.51%	2.86%

RELIABILITY EVALUATION OF A RESNET-18 CONVOLUTIONAL LAYER

RELIABILITT EVALUATION OF AN ALEANET CONVOLUTIONAL LATER				 CONVOLUTIONAL LATER			
Method	Software Fault Injection		Hybrid-based Fault Emulation (<i>FireNN</i>)		Method	Hybrid-based Fault Emulation (<i>FireNN</i>)	
Fault Model	SEU in Weights	SEU in Data	SEU in Conf. Memory	Open Routing	Fault Model	SEU in Conf. Memory	Open Routing
Error Rate	40.57%	46.16%	11.05%	59.62%	Error Rate	12.93%	60.38%
Failure Rate	2.10%	15.48%	5.12%	40.07%	Failure Rate	5.81%	42.17%
Fail./Err.	5.18%	33.53%	46.33%	67.21%	Fail./Err.	44.93%	69.84%
Timeouts	0%	0%	0.40%	2.78%	Timeouts	0.51%	2.86%

Architectural view of the proposed platform

Programmable hardware used **1S** to accelerator's emulate the hardware meanwhile providing architecture, the mechanism for emulating hardware faults

5. References

- 1. B. Du, S. Azimi, C. De Sio, L. Bozzoli and L. Sterpone, "On the Reliability of Convolutional Neural Network Implementation on SRAM-based FPGA," 2019 IEEE International Symposium on Defect and Fault Tolerance in VLSI and Nanotechnology Systems (DFT), 2019, pp. 1-6, doi: 10.1109/DFT.2019.8875362.
- C. De Sio, S. Azimi and L. Sterpone, "An Emulation Platform for Evaluating the Reliability 2. of Deep Neural Networks," 2020 IEEE International Symposium on Defect and Fault Tolerance in VLSI and Nanotechnology *Systems* (*DFT*), 2020, pp. 1-4, doi: 10.1109/DFT50435.2020.9250872.
- 3. C. De Sio, S. Azimi and L. Sterpone, "FireNN: Neural Networks Reliability Evaluation on Hybrid Platforms," in *IEEE Transactions on Emerging Topics in Computing*, vol. 10, no. 2, pp. 549-563, 1 April-June 2022, doi: 10.1109/TETC.2022.3152668.