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1. Task and Motivation

Segmentation is a fundamental task for computer
vision. It consists in assigning every pixel of an image a

class. It still lacks two abilities.

2. Incremental Learning [1,2,3]: learning new classes

over time without forgetting;

3. Weakly-Supervised Learning [1,2]: learning from
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5 learn new classes over time using only cheap image-
| £ level labels.
Knowledge Distillation: to avoid Soft-Pseudo Labels: we smooth Segmentation Loss: we use

2. Method catastrophic forgetting, we use the old  the localizer output to reduce the
model output to regularize the training. noise in the pseudo-labels.

@ the segmentation model.
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Localizer: takes in input the image Aggregation: we use normalized Classification Loss: the
features and output a per-pixel score Global Avg. Pooling to transform  localizer is trained using the
for each class (both old and new). the per-pixel scores. multi-label soft margin loss.
3 Resul tS Sup. Method Disjoint Overlap
. 1-15 | 16-20 | All | 1-15 | 16-20 | All
The table compares sota methods in terms of mIoU on the Joint 755 | 735 | 754 | 755 | 735 | 754
Pascal-VOC dataset, using 15 base and 5 new classes. MIB[2] | 818 | 433 | 647 | 755 | 494 | 69.0
While being cheaper, the proposed method is competitive or Pixel rLor 710 | 428 | 643 | 757 | 17 | 70
, , , , SDR 735 | 473 | 672 | 754 | 526 | 69.9
superior to methods relying on expensive pixel-level labels. RECALL | 692 | 320 | &3 | &0 | 523 | eoe
CAM 693 | 261 | 594 | 699 | 256 | 59.7
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the old model and the soft-
pseudo labels to finally train




