

1.Introduction

In recent years, Industry 4.0 focused on new smart processes, like Additive Manufacturing (AM), that require more sophisticated control and management infrastructures.

2.Research Goals

3.1. Product defects detection

One of the main technologies in AM is Powder Bed Fusion. In this process, several defects occurs (holes, spattering, etc.) so an image analytics algorithm service with a U-Net to detect defects was developed.

					-
	Holes	Spatt.	Incand.	Horizontal	Vertical
Accuracy	91.3%	95.8%	79.2%	91.6%	91.6%
Precision	87.5%	95.6%	75.0%	91.6%	100.0%
Recall	100.0%	100.0%	100.0%	91.6%	75.0%
F-score	0.93	0.98	0.86	0.92	0.86

Creation of a management framework for smart manufacturing environment in order to address industry 4.0 demands.

3. Management framework for smart manufacturing

To respond to the industry 4.0 needs, I propose a general-purpose platform able to manage several smart manufacturing use cases [1]. The platform is developed based on state-of-art open-source software (DeviceHive, PostgreSQL, React) to guarantee the process quality, efficiency and security standards and interoperability with the machines and software already present. Using machine learning techniques, a set of custom services are integrated in the platform to face several critical issues in AM: product defects detection [2], synthetic image generation [2], visual inspection and process control [3], and process anomaly detection.

	0.00	0.00

 Table 1: Defects detection results

3.2. Synthetic image generation

In AM production, the data available are limited by time and costs. Therefore, a service with a ConSinGAN network to generate synthetic data is

provided.

Figure 3: Synthetic image result (right) and original image (left)

3.3. Visual inspection

To guarantee the quality of products in AM, a visual inspection service with different computer vision techniques (thresholding, etc.), and a machine learning model (U-Net) is integrated in the platform.

	Accuracy	Sensitivity	Specificity
Laboratory	87.99 %	70.31 %	88.37 %
Industry	76.89 %	60.68 %	77.36 %

 Table 2: Results of visual inspection in different environments

3.4. Process anomaly detection

A platform service for process anomaly detection of Electron Beam Melting processes was developed. An LSTM autoencoder is used to reconstruct the machine signals and **predict the future status of a job**.

Figure 2: AM Management Framework

	Precision	Recall	F1-score
Fail	86 %	75 %	80 %
Success	78 %	88 %	82 %

Table 3: Results of process anomaly detection

4. References

- 1. Cannizzaro, D., et al., "In-situ defect detection of metal Additive Manufacturing: an integrated framework", IEEE TETC, 2021.
- 2. Cannizzaro, D., et al., "Image analytics and machine learning for in-situ defects detection in Additive Manufacturing", Proc. DATE, 2021.
- **Cannizzaro, D.**, et al., "Quality inspection of critical aircraft engine 3. components: towards full automation", Proc. ETFA, 2022.