

PhD Candidate:

Annachiara Ruospo

1. Introduction

Nowadays, the usage of electronic devices running applications based on Artificial Neural Networks (ANNs) is spreading in our everyday life. To use them safely in human contexts, there is a compelling need for assessing their reliability.

2. Motivation

Based on this and on the available PEs of the target AIoriented MPSoC, a value is given to each chunk of neurons

assigned to a single PE.

Variance Metric to measure the criticality of group of neurons.

Then, the approach exploits an **integer linear programming** solver to find the optimal and deterministic solution to map ANNs elaborations onto the target hardware architecture.

Artificial Neural Networks are often considered intrinsically robust for being brain-inspired and redundant computing models. However, when they are deployed on resource-constrained hardware devices, **single physical faults** might jeopardize the activity of **multiple neurons**, leading to unwanted outcomes.

Moreover, in the literature it is claimed that neurons exhibit different fault tolerance and resilience levels.

3. Principal Contributions

1. Methodology to identify the most **critical neurons** of a neural network by assigning resilience values to each of them.

4. Results

The proposed ILP-based scheduling is able to reduce by 24.74% the neural network wrong predictions (SDC-1%). Overall, it is able to reduce the risk of misbehaviors, producing evidence of faults in the output vector (MSE > 0) but keeping the prediction correct. It leads to a 0.6% *increase* in memory occupation and an *increase* in simulation times of 3.2% at run-time for a single inference cycle.

Fault Injection Results	Static Scheduling		Proposed Scheduling		[9/]]]] .
	Images	[%]	Images	[%]	[%] variation
SDC-1	1338	1.63	1007	1.23	-24.74
Hang	71,840	87.61	65,040	79.32	-9.47
Masked, $MSE > 0$	4910	5.99	9712	11.84	+97.80
Masked, $MSE = 0$	3912	4.77	6241	7.61	+59.53
Total	82,000	100	82,000	100	

2. Reliability-oriented Integer Linear Programming (ILP)-based methodology to **uniformly distribute critical neurons** among the available Processing Elements (PEs) of a MPSoC.

3. Method

The method bases on two levels of analysis: first, the neuron is viewed as an element of each output class (class-oriented analysis); second, the same is interpreted as belonging to the entire neural network (network-oriented analysis).

4. Conclusions

This work provides a methodology to improve the reliability of a neural computing system running in a multi-core device. In the future, we will exploit deeper ANNs and more complex datasets, moving the target to GPUs and high-performance architectures.

References

[1] Misra, J.; Saha, I. Artificial neural networks in hardware: A survey of two decades of progress. Neurocomputing 2010, 74, 239–255.

[2] Zhang, J.J.; Gu, T.; Basu, K.; Garg, S. Analyzing and mitigating the impact of permanent faults on a systolic array based neural network accelerator. In Proceedings of the 2018 IEEE 36th VLSI Test Symposium (VTS), San Francisco, CA, USA, 22–25 April 2018