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1.Introduction

• Modern Deep Neural Networks (DNNs)
represent the backbones of several
computer vision, audio and natural
language processing applications.

• The deployment of DNNs on embedded
systems enables us to sense the physical
world with high privacy standards, low
latency, and high energy efficiency.

• Unfortunately, modern DNNs require
huge computational power, large storage
and memory footprint. However,
embedded systems have limited
computational power, low storage
capacity, and small on-chip memory.

2.Research Goals

• Provide application designers with a
toolbox of optimization techniques to
make DNNs not only accurate but also:

fast energy-efficient

small adaptable

• to satisfy the physical constraints and the
requirements of embedded systems.

3. The Optimization Toolbox

• To make DNNs faster and more energy-
efficient, in [1], we proposed an end-to-
end optimization flow consisting of an
HW-aware quantization process and
optimized fixed-point convolutional
routines.
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• To build small but accurate DNNs, in [2],
we proposed combining input resolution
scaling with HW-aware neural
architectural design and training
pipeline to bring DNNs on tiny devices
powered by microcontroller units (MCU).

• To reduce the activation footprint of a
DNN, in [3], we proposed a compiler pass
that identifies the sub-graphs with the
highest memory requirements and then
applies a functional-preserving topology
restructuring to reduce the peak memory
consumption.

4. Results

• On a RaspberryPi 3B, our solution [1] was
up to 3x faster and more energy-efficient
than SOTAwith similar accuracy.

• On an STM32-F7 powered by an ARM
CortexM7, uPyD-Net [2] processes 3 FPS
within a 350mW power budget.

• Results collected in [3] on several DNNs
show that the topology restructuring
achieves remarkable memory savings
(62.9% on avg.) with low computational
overhead (8.6% on avg.).

• In [4], we demonstrated that composing
sparsity and graph transformations
makes highly accurate DNNs feasible on
devices with minimal memory resources
(512KB of RAM and 1MB of FLASH).
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