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1. Introduction 3. Method

Recommender Systems (RS) provide personalized In order to preserve the semantics of the KG

suggestions of items that a user may like. RS properties and to learn effective features for

leverage different sources of information, such as: recommendations, I have introduced entity2rec

1) the history of the user 2) other users’ behavior [1]. It works as follows (Fig. 1); a).split the KG in a

3).item content. All of these heterogeneous set of property-specific subgraphs b) apply.a state-

interactions can be easily modelled in semantic of-the-art graph embedding algorithm (node2vec)

graph structures known as Knowledge Graphs on the subgraphs, obtaining property-specific

(KG).. However, extracting effective feature vectors embeddings and user-item relatedness scores ¢)

for recommendation from such complex aggregate property-specific user-item relatedness

structures is not a trivial task. scores into a global user-item relatedness score for
recommendations. In this way. the semantics of

2. Goals properties is preserved in the recommendation
model (see ‘¢’ in Fig.1), making it more

The goal of this thesis is to explore the use of interpretable.

machine learning algorithms that automatically

learn feature vectors from a knowledge graph 4, Results

(Knowledge Graph Embeddings) to perform

recommendations. entity2rec achieves better serendipity compared to
state-of-the-art collaborative filtering algorithms

The Big Lebowsi and existing KG embeddings algorithms on three
S S e standard datasets (Fig. 2).
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