
POLITECNICO
DI TORINO

Dipartimento di
Automatica e Informatica

PhD in Computer and Control Engineering
Supervisor

cycle

PhD Candidate:

3. SpiNNaker – MPI
The goal of the MPI software stack is provided to SpiNNaker a
parallel programming model based on message passing,
exploiting its connectivity. To overcome the hardware
limitation of the architecture when is required a p2p
communication, we have developed a middleware (MCM)
capable of diverting unicast, broadcast and synchronization
communications on the multicast network. The MPI
implementation was built on top of MCM, and virtual
Memory Entities, a mechanism to share memory regions
around the 768 processors of a SpiNNaker Board [2,5].

Francesco Barchi

Many-core and heterogeneous architectures: 
programming models and compilation toolchains

XXXII

6. References
[1] “Code Mapping in Heterogeneous Platforms Using Deep Learning 
and LLVM-IR”. 56th ACM/ESDA/IEEE Design Automation Conference 
(DAC), 2019.
[2] “Flexible On-line Reconfiguration of Multi-core Neuromorphic
Platforms”. IEEE Transactions on Emerging Topics in Computing, 2019.
[3] “Mapping Spiking Neural Networks on Multi-core Neuromorphic
Platforms: Problem Formulation and Performance Analysis”. IFIP 
Advances in Information and Communication Technology, 2019
[4] “Directed Graph Placement for SNN simulation into a multi-core 
GALS architecture ”. 26th IFIP/IEEE International Conference on Very
Large Scale Integration, VLSI-SoC 2018 
[5] “An Efficient MPI Implementation for Multi-Core Neuromorphic 
Platforms”. 1st New Generation of Circuits and Systems, NGCAS 2017

4. LLVM-IR Code Classifier
The goal is to choose the fastest compute unit in a
heterogeneous target platform for a specific pair of code and
data. The approach works at the LLVM-IR level. I use an
LLVM front-end compiler (e.g. Clang) to perform the
compilation of an application expressed in a high-level
programming language. Using an intermediate code
representation, the classifier is independent of the source
language and the underlying hardware. The language
modelling part is based on an LSTM (Long Short-Term
Memory) or CNN (1D Convolutional) network, and the
classifier part is a sequence of dense layers. We obtained 84%
of mean classification accuracy. [1].

Prof. Andrea Acquaviva
Prof. Enrico Macii

1. Introduction
In heterogeneous and many-core platforms, the mapping
procedure of “what to do” (computing, communication,
storage) and “where to do it” is not a trivial task. In this
scenario, my research work evolved from many-core platforms
in the neuromorphic field, through the development of
middleware to support parallel programming models, to reach
machine-learning techniques for IR code classification and
domain specific compilation pipelines for ultra low power
heterogeneous systems.

2. SpiNNaker – SNN Mapping
The SNN mapping in SpiNNaker is relevant; an inefficient
allocation impacts the reliability of the network execution. We
formalised the problem by breaking it into two phases: i)
Graph Partitioning, the network is divided into subsets
satisfying two constraints: neuron model type and
computational complexity. ii) Graph Placement, formalised as a
permutation search problem using: A (SNN adjacency matrix),
D (distance matrix of SpiNNaker nodes), ! (permutation
vector), and the function f (synaptic elongation) to minimise.
Using a basin-hopping optimisation technique, we obtained a
25% improvement in f [3,4].

5. GLOW and PULP
I explored state of the art in the field of domain-specific
compilers able to optimize the execution of computational
graphs (Machine Learning, Linear Algebra, Stencil
Computations) studying the most prominent actors in this
field: MLIR from Google, GLOW from Facebook and TVM. I
started to develop a RI5CY backend for GLOW, a runtime for
the network model manager in a simple PULP platform and
the helper tool XPulp (cross-pulp) for simplifying cross-
toolchain compilation. I performed a preliminary study to
introduce new GLOW optimization steps for PULP
architectures.

SDP MCM

𝑓 = 𝑒$ 𝐴 ⨀ 𝐷( 𝑒
= ∑* ∑+ 𝑎*+ 𝑑*+(

𝐷( = 𝑃(𝐷𝑃(

𝐴 𝐷

Unoptimized 𝑓 Optimized 𝑓 classification

FC FC

OUT

fc1_size

E LSTM LSTM

AUX_IN
IN

e_dim lstm1_dim

lstm2_size

code modeling

E

AUX_IN
IN

e_dim cnn_kernels

i_size

cnn_kernelskernel_size

GMP
CONV

1D

All references have as authors: F.Barchi et al.


