
POLITECNICO
DI TORINO

Dipartimento di

Automatica e Informatica

PhD in Computer and Control Engineering

Supervisor

cycle

PhD Candidate:

1.Introduction

Modern systems are highly distributed and the

end devices are very diverse.

Man-At-The-End attacks (MATE): attackers

tamper with software applications in contexts

where they have full privileges. Hence, hardware

independent protections for software execution

correctness are needed.

2.Software attestation

Software attestation is a software-only, remote,

integrity checking technique. The Attestation

Manager triggers the attestation procedure. The

Attestation Manager sends an attestation request.

The Attester extracts integrity evidences and

sends them back to the server side. The Verifier

checks what received to prove target integrity.

3.Static Software Attestation

The classical way, it monitors the integrity of

program's binary in memory. Attester collects bytes

from memory via a random walk and sends a

digest of them to the verifier that compares it with a

precomputed one.

Effective but no reaction to tamper. Then,

Reactive Attestation: robust detection-reaction

technique given by coupling of static software

attestation and Client-Server Code-Splitting (CS-

CS) [1].

Software Attestation with

Static and Dynamic Techniques

prof. Antonio Lioy

XXXI

Alessio Viticchié

4.Dynamic Software Attestation

Invariants monitoring (IM): to monitor integrity

based on dynamic properties, i.e. likely invariants

that are logic assertion valid for a portion or for the

whole program.

Idea: use likely invariants to model software

behavior thus to check execution integrity.

Good but not working in practice, IM suffers from

false positives and, much worse, from false

negatives. Those issues cannot be overcome then

the technique is not useful in practice [2].

5.Conclusions

Software attestation is not sufficient to

exhaustively protect a program. Static software

attestation only detects very specific attacks.

Invariants Monitoring is not useful for security

purposes. For the future, robust software analysis

techniques are needed to better model software

behaviour.

6.References
1. Viticchié A. et al., “Reactive Attestation: Automatic Detection and

Reaction to Software Tampering Attacks”, SPRO 2016, DOI:

10.1145/2995306.2995315

2. Viticchié A. et al., “On the impossibility of effectively using likely-

invariants for software attestation purposes”, ISYOU June 2018,

DOI: 10.22667/JOWUA.2018.06.30.001

invalid == 1

Violated invariant

check_license(){

if(invalid == 1){

exit(1);

}

}
$> invalid = 0

Debugger

