
POLITECNICO
DI TORINO

Dipartimento di

Automatica e Informatica

PhD in Computer and Control Engineering

Supervisor

cycle

PhD Candidate:

1. Introduction

Nowadays, with cyber attacks on the rise,

software must be protected, to avoid risks for

users and huge monetary losses for software

developers: but protecting software is a difficult

task restricted to few security experts.

Idea: an automated system, trained with

software security expert’s field experience, to

enable everyone to protect their software, and

also to simplify experts’ work.

2.Software security meta-model

The need to formalize the general information

about software security gathered from security

experts, and also the data inferred by the expert

system on the target application, lead to the

definition of a comprehensive software security

meta-model. Implemented as an OWL2 ontology,

is able to represent information about:

• application structure: variables, functions,

control flow graph, call graph, etc.;

• assets: variables and code snippets that must

be protected, with their security requirements,

e.g. confidentiality, integrity;

• attacks: combinations of simple attacker

actions (static/dynamic analysis and tampering),

with the required attack tools and expertise;

• protections: effectiveness against attacks,

synergies between protections, with tool-

specific information to deploy them on assets;

3.Expert system for software

protection

The system, implemented as a set of Eclipse

RCP plugins, is able to analyze and protect C/C++

applications. Is publicly available on GitHub [1].

1. source code parsing: based on Eclipse CDT,

models the application’s source code structure;

2. vulnerability analysis [2]: finds possible

attacks against assets, with a backward

reasoning algorithm written in Prolog;

Leonardo Regano

An Expert System for

Automatic Software Protection

prof. Antonio Lioy

XXXI

3. protections decision: in order to delay attacks,

infers protections that can be applied to the

assets, and combines them in a solution, able to

protect adequately the assets with a limited

application performance degradation;

4. asset hiding [3]: refines the solution with

additional protections, applied even on non

critical code areas, to slow attackers in finding

and subsequently attacking the assets.

4.Conclusions

The system development started during the

ASPIRE FP-7 EU project. It has been tested on

several open-source applications and three

industrial use-cases: a OTP generator, a software

licensing scheme and a DRM video player. Experts

from ASPIRE industrial partners validated the

solutions inferred on the use-cases.

5.References
1. https://github.com/SPDSS/adss

2. Regano L. et al., Towards Automatic Risk Analysis and Mitigation

of Software Applications, WISTP 2016, DOI: 10.1007/978-3-319-

45931-8_8

3. Regano L. et al., Towards Optimally Hiding Protected Assets in

Software Applications, QRS 2017, DOI: 10.1109/QRS.2017.47

Source code parsing

Vulnerability analysis

Protections decision

Application source code

Asset hiding

Software security
solution

Meta-model
instance

Anti
debugging

Software
attestation

Debug
application

Locate
asset

Tamper
with asset

Breach
asset

integrity

