

PhD in Computer and Control Engineering XXXI cycle

Machine Learning and Other Computational Intelligence Techniques for Security Applications

PhD Candidate:

Andrea Marcelli

1. Introduction

Malware is a big business [1]. With hundreds of thousands of malware delivered every day, manual analysis in not an option. New automated approaches have to be designed to effectively detect new threats.

2. Objectives

- Scalability (20k 30k new APKs/day)
- Reduce malware exposure time
- 100% recall and very high precision
- Automate very repetitive tasks to save a considerable amount of experts' time and resources.

3. Proposed method

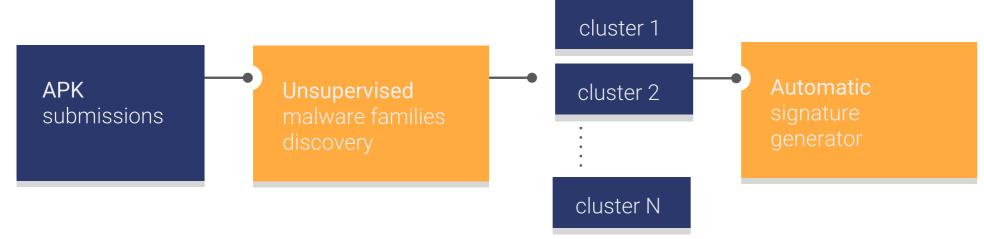
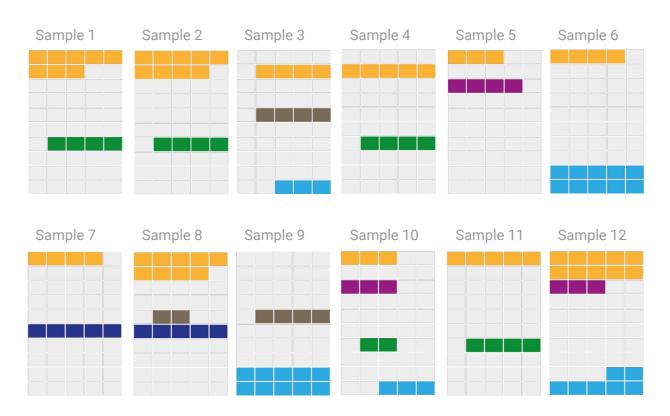



Figure 1: the proposed workflow

Fig. 1 shows the workflow proposed in [2]. New applications are periodically analyzed through an unsupervised procedure. Clusters are then classified in 7 categories: according to their composition, some may require a manual approval, then new signatures are created to detect new variants.

The problem of generating a signature is reduced to a variant of the "Set Cover Problem" (Fig. 2): several heuristics, a greedy, and an evolutionary algorithm are used to create a ruleset that perfectly balances the "generality" with "specificity".

The algorithm was implemented in a tool, YaYaGen [3], presented in [4]. Since Jan. 2018, it is used in Koodous, a real-word mobile AV.

gen

Figure 2: the "Set Cover Problem"

Figure 3: YaYaGen logo

4. Results

Rule Name	Original	YaYaGen	Improvement
SMSSENDER	539	1,004	+86.3%
SYRINGE	220	315	+43.2%
HUMMINGBAD2	136	257	+89.0%
MARCHER2	559	652	+16.6%
SMSREG	159	172	+8.2%
VOLCMANDROPPER	186	430	+131.2%

Figure 4: comparison between manual and automatically generated rules

Extensive tests were carried on a huge dataset of 1.5 millions Android applications. Fig. 4 shows that automatically generated rules increase the number of malware detected, ranging from the 8% to the 131%, while reducing the number false positives.

5. Conclusions

A new scalable semi-supervised approach to dig into massive dataset of applications is presented. It allows to automatically identify malware families and generate YARA rules.

6. References

- 1. "The Rise of Android Banking Trojans", Andrea Atzeni, Fernando Diaz, Francisco Lopez, Andrea Marcelli, Antonio Sanchez, and Giovanni Squillero. IEEE Potentials, under review
- 2. "Countering Android Malware: a Scalable Semi-Supervised Approach for Family-Signature Generation". Andrea Atzeni, Fernando Diaz, Andrea Marcelli, Antonio Sanchez, Giovanni Squillero, and Alberto Tonda. IEEE Access, 2018
- 3. https://github.com/jimmy-sonny/YaYaGen
- 4. "Looking for the perfect signature: an automatic YARA rules generation algorithm in the AI-era", Andrea Marcelli. BSidesLV 2018 and DEF CON 26