1. Context

Computational Systems Biology aims to represent biological systems holistically, as more of the sum of their parts, with formal models that can be simulated. Rapid technological advancements in the last decades made the approach to life sciences more systematic, generating large amounts of quantitative data for enriching the more traditional functional, qualitative representations of biological mechanisms. Improvements on the computational side, allowing for properly handling more computational complexity, make possible to extend this approach to larger parts of biological systems.

2. Objectives

Computational Systems Biology aims at a range of objectives, from knowledge inference to its representation and exchange [1], serving the expert modeler as well as the experimentalist. The objective of this PhD work is to design a predictive computational modeling approach for complex biological systems focusing on the regulatory role of spatiality. Accessibility and usability are considered respect to the heterogeneity of this scientific domain.

3. Methods

The high-level Petri Nets formalism Nets-whithin-nets supports simulable models expressing: hierarchy, quantitative information, non-linearity, stochastic behavior, compartmentalization. They suitably express spatiality, as well as supporting hybridity in model construction processes involving different subdomains of Systems Biology. NWN models specify multiple regulation layers from the system and their dynamic hierarchical relations, including more of the complexity implied in phenomena of interest. The Biological Systems Description Language (BiSDL) is a modular, domain-specific model description language. It makes NWN models accessible for non-expert users thanks to libraries of composable high-level functional modules. Expert users can build up custom modules and populate libraries with them.

4. Results

After creating and using the NWN-based modelling strategy for different targets, such as ontogenetic processes [2], antibiotic resistance spread dynamics [3, 4] and synthetic systems design [5], we intend to build a framework for the analysis, modeling and simulation of complex biological systems, firstly automating the flow from BiSDL descriptions to NWN models and their simulation.

Also, in the context of the VdAHeart project, we worked at the design of bioinformatic analysis pipelines for characterizing the polyphenols and bioactive peptides profiles in local agrifood and dairy products respectively.

5. References