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1. Introduction / Context

As we move deeply into the era of nano-scale devices,

reliability becomes a key challenge for the semiconductor

industry. Failing to meet a reliability requirement may add

excessive re-design costs to recover and may have severe

consequences on the success of a product. Worst-case

design with large margins to guarantee reliable operation

has been employed for long time. However, it is reaching a

limit that makes it economically unsustainable due to its

performance, area, and power costs. The current practice is

to rely either on time consuming gate-level fault injection

campaigns or on simplified models that guarantee smaller

computation time but deliver very coarse-grain and

conservative (i.e. pessimistic) reports of the system

reliability.

One solution is to apply different protection

mechanisms at different layers of the system implementing

what is nowadays called cross-layer reliability

enhancement. Unfortunately, tools and models for this

method are still at their early stages compared to other

very mature design tools (e.g., performance and power

optimization tools).

2. Goal 

This work proposes a novel system-level cross-layer

reliability assessment framework:

• built on top of a component-based Bayesian model of

the target system;

• modeling the interaction among the components the

system;

• delivering reliability estimations accurately and

quickly:

• guiding system designers by helping the selection of

the best fault-tolerance mechanisms to reach the

desired reliability requirements without overdesign the

final system.

3. Method

The proposed Bayesian system reliability model is

composed of a qualitative model representing the

architecture of the system and a quantitative model,

representing the reliability of each component and their

relations [1].

The qualitative model reflects the system architecture,

defined through a directed acyclic graph. The set of

vertices is split into two subsets: components and

parameters. Components are blocks composing the system.

Depending on the architectural layer (technology, HW,

SW) the component definition changes. Components are

associated to Bayesian nodes, i.e., their reliability is

associated to a set of random variables. Parameters are

special vertices that are not direct part of the Bayesian

model. They represent implementation details of a

component (e.g., operating temperature, workload, etc.)

exploited by our framework to build the quantitative

model of the system described later in this section. Arcs

among component nodes define temporal or physical

reliability relations among components, e.g., a failure state

of a component may influence the state of another

component. Finally, the arcs connecting parameter to

component nodes model relations between a component

and its implementation parameters. Based on the system

stack, components of a system are split into four subsets or

domains (Figure 1) each requiring different techniques to

be characterized for reliability.
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The quantitative model of the system defines the

probability of occurrence of an error/fault in a component

depending on the condition of its direct interacting

components and on its implementation parameters. In a

Bayesian model the quantitative model is a set of

Conditional Probability Tables (Figure 1). Each node is

associated to a set of states that identify potential error or

error-free conditions of the node (e.g., a memory can be

error free, or it can be affected by a single bitflip, or by a

double bit-flip). The set of states of the nodes depends on

the node domain and on the specific characteristics of the

node. For each state of a node, we need to look at all

combinations of states of its parent nodes.

Thanks to the properties of the proposed model, by

applying Bayesian reasoning, the weakest components of

the system can be identified. This capability has been

exploited for the implementation of an automatic system

optimization framework. An innovative multi-level

extremal optimization algorithm is able to iteratively

estimate the impact of the application of different fault-

tolerant techniques to the reliability of the system. This

enables to carefully optimize the system toward the best

reliability minimizing the impact of the introduced

protection mechanisms on power, area and performance,

thus avoiding to overdesign the system.

4. Results

To evaluate the capability of the proposed cross-layer

reliability estimation framework several systems based on

miBench applications were analyzed and results compared

with those provided by state-of-the-art micro-architectural

fault injectors. The reliability analysis targets several

microprocessor hardware structures : L1/L2 cache,

Register File and Load Store Queue. Results are reported

in Figure 2.a, where reliability is expressed in terms of

Architectural Vulnerability Factor (AVF), that is the

probability of an error occurring in a

hardware structure to manifest as a fault at the output of

the system. Figure 2.b shows the time required to perform

the analysis expressed in hours of simulation. Results

demonstrate that our analysis is accurate and fast even for

complex industrial applications (FMS and Tsunami),

making it suitable to be integrated into commercial

application. Finally, the optimization process for a specific

system is illustrated in Figure 3.a. Results are presented for

reliability only constraint as well as in presence of other

design constraints (Figure 3.b).

5. Conclusions

The goals of this work were successfully achieved. Further

works will address improvements for the reliability

estimation accuracy and the time required by the analysis.
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Figure 1: The Bayesian Network modeling the system
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Figure 2.a : AVF computed by uA FI and the proposed Bayesian reliability analyzer

Figure 2.b : Hours of simulation required by uA FI and the proposed Bayesian 
reliability analyzer
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Figure 3.b : Exploiting different cost functions different trade-offs between 
reliability, timing, power and area can be achieved.

Figure 3.a :Reliability only optimization for FFT benchmark running on ARM® 
Cortex®-A15 


