
POLITECNICO
DI TORINO

Dipartimento di

Automatica e Informatica

PhD in Computer and Control Engineering

Advisor

cycle

PhD Candidate:

Introduction

Electronic devices may be affected by faults as an

effect of physical defects. These defects may be

introduced:

• during the manufacturing process

• while the device is operative (due to aging).

Safety-critical applications do not tolerate errors due

to faults: this is the reason why testing such devices

is needed so to guarantee a correct behavior at any

time. Testing is performed with different approaches.

Riccardo Cantoro

New techniques for functional test

of processor-based systems

Ernesto Sanchez

29th

Additional aspects are considered when dealing with industrial test programs development:

• Time and memory constraints

• Coexistence with the final application (mission) and the Operating System

• Robust execution.

[3] P. Bernardi, R. Cantoro, S. De Luca, E. Sánchez and A. Sansonetti, "Development Flow for On-Line Core Self-Test of

Automotive Microcontrollers," in IEEE Transactions on Computers, vol. 65, no. 3, pp. 744-754, March 1 2016.

• Results refer to a SoC employed in safety-critical

automotive embedded systems, such as airbag,

ABS, and EPS controllers. SoC is currently

manufactured by STMicroelectronics.

• 73 test programs written in assembly

• Full execution time: 0.8 ms (@150 MHz).

Peripheral 1

Memory

Test programs

Peripheral 2

Peripheral 3
Test signature

CPU
FF

FF

Test equipment
fault

Wrong
values

Research questions

How to improve current SBST

fault coverage?
 New systematic SBST algorithms

 Investigation of observability issues

How to deal with expensive

SBST development flow?
 Automatic test programs generation

 Effective industrial development flow

Validity
Checker
Module

Processor

Pseudo-D
Inputs

Internal
Signals

Primary
Outputs

Primary
Inputs

Synthesis
Tool

HDL:
Constraint 1
Constraint 2
.....

Validity
Outputs

Automatic test programs generation [1] The test environment is represented with formal

constraints written in hardware-description

language (HDL). A satisfiability (SAT) solver is used

to generate test programs able to cover all

detectable faults and to respect the constraints.

Results

• The framework is able to prove that certain faults

are untestable by means of functional programs.

• The testable fault coverage is superior to manual

generation techniques (up to 98% coverage on a

MIPS-like processor).

Design for Testability  the original design is

equipped with special hardware devoted to testing

• Scan-chains

• Logic/memory built-in self-test (LBIST, MBIST).

Software-Based Self-Test  a suite of test programs

is stored in a memory accessible by the processor

• The processor executes the test program

• Results are gathered and compared with the

expected ones.

New systematic SBST algorithms

In my research, the fault coverage of several

processor sub-modules have been increased by

means of systematic SBST algorithms

• Register forwarding & pipeline interlock [MTV’13]

• Decode units [DFT’14]

• ALU modules [EST’15]

• Cache coherency logic [LASCAS’15]

• Embedded floating-point units [DFT’16]

0%

20%

40%

60%

80%

100%

RF&PI Decode ALU FPU

Fa
u

lt
 c

o
ve

ra
ge

In-field SBST scenario

Investigation of observability issues [2]

The effectiveness of test programs depends,

among other factors, on the mechanisms adopted

to observe the behavior of the system.

Part of my research focused on the quantitative

evaluation of the drop in fault coverage coming

from the adoption of the alternative approaches.

[2] J. Perez Acle, R. Cantoro, E. Sanchez, M. Sonza Reorda, G. Squillero,
“Observability solutions for in-field functional test of processor-based
systems: A survey and quantitative test case evaluation,” Microprocessors
and Microsystems, Volume 47, Part B, November 2016, Pages 392-403.

Module-Level
ObservabilitySystem Bus

Observability

Performance Counters
Observability

Memory Content
Observability

M
E

M
O

R
Y

PROCESSOR

B
U

S

INTERNAL

MODULE

Module-Level
Observability

Processor-Level
Observability Memory

Content
Observability

System Bus
Observability

Performance Counters
Observability

Test
generation

effort

Observability
level

S4

S1 S3

S2 S4

S1 S3

S2

S1

S2 S4

S3S1

S2 S4

S3

segmentation generation

synchronizationnew generation

Effective industrial development flow [3]

Industrial processors are typically too large to test as

a unique module. In my research, a general SBST

development flow has been implemented. The overall

flow is based on the following principles:

Modularity  the fault list is split in sub-modules by

taking into account structural and functional aspects.

Parallelization  test programs are developed in

parallel on orthogonal fault lists.

Positive side-effects  previously generated test

programs are evaluated on a larger set of faults

before starting a new generation phase.

Module #faults

Single

1A

FC [%]

Synchro

1A

FC [%]

Single

1B

FC [%]

Synchro

1B

FC [%]

Single

2A

FC [%]

Single

2B

FC [%]

Synchro

2A+2B

FC [%]

Single

3

FC [%]

Synchro

3

FC [%]

Functional

Units 140k 86.89 89.21
-- -- -- --

89.51
--

91.78

Branch

Units 72k
-- --

75.07 75.52
-- --

76.43
--

78.28

Register

Bank 210k
--

70.19
-- --

89.54 93.53
--

95.38

Addressing

modules 31k
-- -- --

66.29 80.34 81.59
--

82.33

Pipeline

modules 278k
-- -- -- -- -- --

64.59 79.91 81.10

Glue logic 19k -- -- -- -- -- -- -- -- 63.36

TOTAL 760k -- 36.07 -- 9.74 -- -- 76.87 -- 87.23

[1] A. Riefert, R. Cantoro, M. Sauer, M. Sonza Reorda and B. Becker, "A Flexible Framework for the Automatic Generation of SBST Programs," in IEEE Transactions on
Very Large Scale Integration (VLSI) Systems, vol. 24, no. 10, pp. 3055-3066, Oct. 2016.

